4 research outputs found

    Infinite and Bi-infinite Words with Decidable Monadic Theories

    Get PDF
    We study word structures of the form (D,<,P)(D,<,P) where DD is either N\mathbb{N} or Z\mathbb{Z}, << is the natural linear ordering on DD and P⊆DP\subseteq D is a predicate on DD. In particular we show: (a) The set of recursive ω\omega-words with decidable monadic second order theories is Σ3\Sigma_3-complete. (b) Known characterisations of the ω\omega-words with decidable monadic second order theories are transfered to the corresponding question for bi-infinite words. (c) We show that such "tame" predicates PP exist in every Turing degree. (d) We determine, for P⊆ZP\subseteq\mathbb{Z}, the number of predicates Q⊆ZQ\subseteq\mathbb{Z} such that (Z,≤,P)(\mathbb{Z},\le,P) and (Z,≤,Q)(\mathbb{Z},\le,Q) are indistinguishable. Through these results we demonstrate similarities and differences between logical properties of infinite and bi-infinite words

    Infinite and bi-infinite words with decidable monadic theories

    Get PDF
    We study word structures of the form (D,<,P) where D is either the naturals or the integers with the natural linear order < and P is a predicate on D. In particular we show: The set of recursive infinite words with decidable monadic second order theories is Sigma_3-complete. We characterise those sets P of integers that yield bi-infinite words with decidable monadic second order theories. We show that such "tame" predicates P exist in every Turing degree. We determine, for a set of integers P, the number of indistinguishable biinfinite words. Through these results we demonstrate similarities and differences between logical properties of infinite and bi-infinite words

    The NANOGrav 15-year Data Set: Observations and Timing of 68 Millisecond Pulsars

    Get PDF
    We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15-year data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar timing array (PTA) experiment that is sensitive to low-frequency gravitational waves. This is NANOGrav's fifth public data release, including both "narrowband" and "wideband" time-of-arrival (TOA) measurements and corresponding pulsar timing models. We have added 21 MSPs and extended our timing baselines by three years, now spanning nearly 16 years for some of our sources. The data were collected using the Arecibo Observatory, the Green Bank Telescope, and the Very Large Array between frequencies of 327 MHz and 3 GHz, with most sources observed approximately monthly. A number of notable methodological and procedural changes were made compared to our previous data sets. These improve the overall quality of the TOA data set and are part of the transition to new pulsar timing and PTA analysis software packages. For the first time, our data products are accompanied by a full suite of software to reproduce data reduction, analysis, and results. Our timing models include a variety of newly detected astrometric and binary pulsar parameters, including several significant improvements to pulsar mass constraints. We find that the time series of 23 pulsars contain detectable levels of red noise, 10 of which are new measurements. In this data set, we find evidence for a stochastic gravitational-wave background.Comment: 90 pages, 74 figures, 6 tables; published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Infinite and Bi-infinite Words with Decidable Monadic Theories

    No full text
    We study word structures of the form (D,<,P)(D,<,P) where DD is either N\mathbb{N} or Z\mathbb{Z}, << is the natural linear ordering on DD and P⊆DP\subseteq D is a predicate on DD. In particular we show: (a) The set of recursive ω\omega-words with decidable monadic second order theories is Σ3\Sigma_3-complete. (b) Known characterisations of the ω\omega-words with decidable monadic second order theories are transfered to the corresponding question for bi-infinite words. (c) We show that such "tame" predicates PP exist in every Turing degree. (d) We determine, for P⊆ZP\subseteq\mathbb{Z}, the number of predicates Q⊆ZQ\subseteq\mathbb{Z} such that (Z,≤,P)(\mathbb{Z},\le,P) and (Z,≤,Q)(\mathbb{Z},\le,Q) are indistinguishable. Through these results we demonstrate similarities and differences between logical properties of infinite and bi-infinite words
    corecore