80 research outputs found

    A Novel Approach for Development and Evaluation of LiDAR Navigated Electronic Maize Seeding System Using Check Row Quality Index.

    Full text link
    Crop geometry plays a vital role in ensuring proper plant growth and yield. Check row planting allows adequate space for weeding in both direction and allowing sunlight down to the bottom of the crop. Therefore, a light detection and ranging (LiDAR) navigated electronic seed metering system for check row planting of maize seeds was developed. The system is comprised of a LiDAR-based distance measurement unit, electronic seed metering mechanism and a wireless communication system. The electronic seed metering mechanism was evaluated in the laboratory for five different cell sizes (8.80, 9.73, 10.82, 11.90 and 12.83 mm) and linear cell speed (89.15, 99.46, 111.44, 123.41 and 133.72 mm·s-1). The research shows the optimised values for the cell size and linear speed of cell were found to be 11.90 mm and 99.46 mm·s-1 respectively. A light dependent resistor (LDR) and light emitting diode (LED)-based seed flow sensing system was developed to measure the lag time of seed flow from seed metering box to bottom of seed tube. The average lag time of seed fall was observed as 251.2 ± 5.39 ms at an optimised linear speed of cell of 99.46 mm·s-1 and forward speed of 2 km·h-1. This lag time was minimized by advancing the seed drop on the basis of forward speed of tractor, lag time and targeted position. A check row quality index (ICRQ) was developed to evaluate check row planter. While evaluating the developed system at different forward speeds (i.e., 2, 3 and 5 km·h-1), higher standard deviation (14.14%) of check row quality index was observed at forward speed of 5 km·h-1

    A novel member of the let-7 microRNA family is associated with developmental transitions in filarial nematode parasites

    Get PDF
    Background: Filarial nematodes are important pathogens in the tropics transmitted to humans via the bite of blood sucking arthropod vectors. The molecular mechanisms underpinning survival and differentiation of these parasites following transmission are poorly understood. microRNAs are small non-coding RNA molecules that regulate target mRNAs and we set out to investigate whether they play a role in the infection event. Results: microRNAs differentially expressed during the early post-infective stages of Brugia pahangi L3 were identified by microarray analysis. One of these, bpa-miR-5364, was selected for further study as it is upregulated ~12-fold at 24 hours post-infection, is specific to clade III nematodes, and is a novel member of the let-7 family, which are known to have key developmental functions in the free-living nematode Caenorhabditis elegans. Predicted mRNA targets of bpa-miR-5364 were identified using bioinformatics and comparative genomics approaches that relied on the conservation of miR-5364 binding sites in the orthologous mRNAs of other filarial nematodes. Finally, we confirmed the interaction between bpa-miR-5364 and three of its predicted targets using a dual luciferase assay. Conclusions: These data provide new insight into the molecular mechanisms underpinning the transmission of third stage larvae of filarial nematodes from vector to mammal. This study is the first to identify parasitic nematode mRNAs that are verified targets of specific microRNAs and demonstrates that post-transcriptional control of gene expression via stage-specific expression of microRNAs may be important in the success of filarial infection

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    Muzzaffarnagri bhedo ke utpadan evam janan guno ya vibhin karko ka prabhav.

    No full text
    Not AvailableNot AvailableICAR-CIRG Makhdoom Farah Mathur

    Not Available

    No full text
    Not AvailableFour protein-rich (groundnut cake-GNC, mustard seed cake-MSC, cotton seed cake-CSC and coconut cake-CNC) and 8 energy-rich (wheat grain-WG, barley grain-BG, oat grain-OG, maize grain-MG, wheat bran A-WBA, wheat bran B-WBB, rice bran-RB, chickpea husk/chuni-GC) feedstuffs were evaluated for their carbohydrate and protein fractions, in vitro dry matter degradability, in vitro methane production and energy loss as methane. Crude protein (CP) and ether extract contents were higher in protein-rich feedstuffs than in energy feedstuffs. High lignin content was noted in CSC, GNC, MSC and RB. Degradable CP fractions of total CP ranged from 0.61 to 0.97 and were higher for protein-rich than energy-rich feedstuffs. On an average, protein-rich feedstuffs had more undegradable CP fraction than the grains or brans. Starch content was highest (P<0.001) in WBB and least in CSC with values of 369 and 37.3 g/kg DM, respectively. Rapidly degradable carbohydrate fraction (CA) was highest in WG, OG, MG (all energy-rich feedstuffs) and least in RB (6.7 g/kg DM). Similar to the observation made in the protein fractions, protein-rich feedstuffs had more unavailable CHO. Feedstuffs energy loss as methane was highest (P<0.001) from GC (1.90 Mj/kg DM) and least from MG (1.19 Mj/kg DM). Methane production of the feedstuffs could be predicted from the chemical composition, CP and CHO fractions. On an average, chemical composition and protein fractions were better predictors of CH4 production versus CHO fractions with mean R-2 values of 0.94 and 0.80, respectively. Data on relative methane emission from energy and protein rich feeds could be utilized to prepare diets that will lead to less methane production from ruminants.Not Availabl

    Effect of Loop Configuration on Steam Drum Level Control for a Multiple Drum Interconnected Loops Pressure Tube Type Boiling Water Reactor

    No full text
    For AHWR (Advanced Heavy Water Reactor), a pressure tube type Boiling Water Reactor (BWR) with parallel inter-connected loops, the Steam Drum (SD) level control is closely related to Main Heat Transport (MHT) coolant inventory and sustained heat removal through natural circulation, hence overall safety of the power plant. The MHT configuration with multiple (four) interconnected loops influences the SD level control in a manner which has not been previously addressed. The MHT configuration has been chosen based on comprehensive overall design requirements and certain Postulated Initiated Event (PIEs) for Loss of Coolant Accident (LOCA), which postulates a double ended break in the four partitioned Emergency Core Cooling System (ECCS) header. A conventional individual three-element SD level controller can not account for the highly coupled and interacting behaviors, of the four SD levels. An innovative three-element SD level control scheme is proposed to overcome this situation. The response obtained for a variety of unsymmetrical disturbances shows that the SD levels do not diverge and quickly settle to the various new set points assigned. The proposed scheme also leads to enhanced safety margins for most of the PIEs considered with a little influence on the 100% full power steady-state design conditions
    corecore