1,185 research outputs found

    Endoscopic retrieval of a proximally migrated biliary stent using extracorporeal shockwave lithotripsy, electrohydraulic lithotripsy, and cholangioscopy with minisnare

    Get PDF
    Video 1ERCP was notable for a proximally migrated biliary stent. Cholangiogram demonstrated multiple filling defects consistent with choledocholithiasis surrounding the proximally migrated biliary stent. Retrieval of the stent was successful using cholangioscopy-directed electrohydraulic lithotripsy, extracorporeal shockwave lithotripsy, mechanical lithotripsy, and minisnare over the course of 2 ERCPs. Complete duct clearance of stones was accomplished with balloon sweeps

    Bi-stochastic kernels via asymmetric affinity functions

    Full text link
    In this short letter we present the construction of a bi-stochastic kernel p for an arbitrary data set X that is derived from an asymmetric affinity function {\alpha}. The affinity function {\alpha} measures the similarity between points in X and some reference set Y. Unlike other methods that construct bi-stochastic kernels via some convergent iteration process or through solving an optimization problem, the construction presented here is quite simple. Furthermore, it can be viewed through the lens of out of sample extensions, making it useful for massive data sets.Comment: 5 pages. v2: Expanded upon the first paragraph of subsection 2.1. v3: Minor changes and edits. v4: Edited comments and added DO

    Ryanodine receptor studies using genetically engineered mice

    Get PDF
    AbstractRyanodine receptors (RyR) regulate intracellular Ca2+ release in many cell types and have been implicated in a number of inherited human diseases. Over the past 15years genetically engineered mouse models have been developed to elucidate the role that RyRs play in physiology and pathophysiology. To date these models have implicated RyRs in fundamental biological processes including excitation–contraction coupling and long term plasticity as well as diseases including malignant hyperthermia, cardiac arrhythmias, heart failure, and seizures. In this review we summarize the RyR mouse models and how they have enhanced our understanding of the RyR channels and their roles in cellular physiology and disease

    Natural and Forced North Atlantic Hurricane Potential Intensity Change in CMIP5 Models

    Get PDF
    Possible future changes of North Atlantic hurricane intensity and the attribution of past hurricane intensity changes in the historical period are investigated using phase 5 of the Climate Model Intercomparison Project (CMIP5), multimodel, multiensemble simulations. For this purpose, the potential intensity (PI), the theoretical upper limit of the tropical cyclone intensity given the large-scale environment, is used. The CMIP5 models indicate that the PI change as a function of sea surface temperature (SST) variations associated with the Atlantic multidecadal variability (AMV) is more effective than that associated with climate change. Thus, relatively small changes in SST due to natural multidecadal variability can lead to large changes in PI, and the model-simulated multidecadal PI change during the historical period has been largely dominated by AMV. That said, the multimodel mean PI for the Atlantic main development region shows a significant increase toward the end of the twenty-first century under both the RCP4.5 and RCP8.5 emission scenarios. This is because of enhanced surface warming, which would place the North Atlantic PI largely above the historical mean by the mid-twenty-first century, based on CMIP5 model projection. The authors further attribute the historical PI changes to aerosols and greenhouse gas (GHG) forcing using CMIP5 historical single-forcing simulations. The model simulations indicate that aerosol forcing has been more effective in causing PI changes than the corresponding GHG forcing; the decrease in PI due to aerosols and increase due to GHG largely cancel each other. Thus, PI increases in the recent 30 years appears to be dominated by multidecadal natural variability associated with the positive phase of the AMV

    Hard X-ray Emission from the NGC 5044 Group

    Full text link
    Observations made with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter (PSPC) spectrum with a 0.5 - 15 keV energy range shows excess hard emission above 4 keV. Addition of a powerlaw component with spectral index of 2.6 - 2.8 and luminosity of 2.6 x10^42 ergs/s within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point source subtracted, non-thermal component is 2.2 - 3.0x10^42 ergs/s . The cosmic-ray electron energy density is 3.6 x10^[-12] ergs cm-3 and the average magnetic field is 0.034 \muGauss in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, ~2.5x10^4, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the group's small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely to the related to the active galaxy and is most likely a relic of the merger. The energy in cosmic-rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.Comment: 17 pages, including 4 figures and 2 table
    • …
    corecore