2,539 research outputs found

    A robust empirical seasonal prediction of winter NAO and surface climate

    Get PDF
    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America

    Time-Symmetric Quantum Theory of Smoothing

    Full text link
    Smoothing is an estimation technique that takes into account both past and future observations, and can be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retrodiction, and smoothing. The proposed theory solves the important problem of optimally estimating classical Markov processes coupled to a quantum system under continuous measurements, and is thus expected to find major applications in future quantum sensing systems, such as gravitational wave detectors and atomic magnetometers.Comment: 4 pages, 1 figure, v2: accepted by PR

    Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves

    Get PDF
    Two-frequency Wigner distribution is introduced to capture the asymptotic behavior of the space-frequency correlation of paraxial waves in the radiative transfer limits. The scaling limits give rises to deterministic transport-like equations. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The solutions to these equations have a probabilistic representation which can be simulated by Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte

    A fully-discrete scheme for systems of nonlinear Fokker-Planck-Kolmogorov equations

    Full text link
    We consider a system of Fokker-Planck-Kolmogorov (FPK) equations, where the dependence of the coefficients is nonlinear and nonlocal in time with respect to the unknowns. We extend the numerical scheme proposed and studied recently by the authors for a single FPK equation of this type. We analyse the convergence of the scheme and we study its applicability in two examples. The first one concerns a population model involving two interacting species and the second one concerns two populations Mean Field Games

    Bellman equations for optimal feedback control of qubit states

    Get PDF
    Using results from quantum filtering theory and methods from classical control theory, we derive an optimal control strategy for an open two-level system (a qubit in interaction with the electromagnetic field) controlled by a laser. The aim is to optimally choose the laser's amplitude and phase in order to drive the system into a desired state. The Bellman equations are obtained for the case of diffusive and counting measurements for vacuum field states. A full exact solution of the optimal control problem is given for a system with simpler, linear, dynamics. These linear dynamics can be obtained physically by considering a two-level atom in a strongly driven, heavily damped, optical cavity.Comment: 10 pages, no figures, replaced the simpler model in section

    Some Estimates for Finite Difference Approximations

    Get PDF
    Some estimates for the approximation of optimal stochastic control problems by discrete time problems are obtained. In particular an estimate for the solutions of the continuous time versus the discrete time Hamilton-Jacobi-Bellman equations is given. The technique used is more analytic than probabilistic

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom

    Climate‐related variations in mixing dynamics in an Alaskan arctic lake

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109805/1/lno2009546part22401.pd
    corecore