1,336 research outputs found

    Photoinduced Chern insulating states in semi-Dirac materials

    Full text link
    Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.Comment: 5 pages, 4 figure

    Interacting bosons in two-dimensional lattices with localized dissipation

    Get PDF
    Motivated by the recent experiment [Takafumi Tomita \emph{et al.}, Sci. Adv. {\bf 3}, (2017)], we study the dynamics of interacting bosons in a two-dimensional optical lattice with local dissipation. Together with the Gutzwiller mean-field theory for density matrices and Lindblad master equation, we show how the onsite interaction between bosons affects the particle loss for various strengths of dissipation. For moderate dissipation, the trend in particle loss differs significantly near the superfluid-Mott boundary than the deep superfluid regime. While the loss is suppressed for stronger dissipation in the deep superfluid regime, revealing the typical quantum Zeno effect, the loss near the phase boundary shows non-monotonic dependence on the dissipation strength. We furthermore show that close to the phase boundary, the long-time dynamics is well contrasted with the dissipative dynamics deep into the superfluid regime. Thus the loss of particle due to dissipation may act as a probe to differentiate strongly-correlated superfluid regime from its weakly-correlated counterpart.Comment: 7 pages, 5 figure

    Flat bands in fractal-like geometry

    Full text link
    We report the presence of multiple flat bands in a class of two-dimensional (2D) lattices formed by Sierpinski gasket (SPG) fractal geometries as the basic unit cells. Solving the tight-binding Hamiltonian for such lattices with different generations of a SPG network, we find multiple degenerate and non-degenerate completely flat bands, depending on the configuration of parameters of the Hamiltonian. Moreover, we find a generic formula to determine the number of such bands as a function of the generation index â„“\ell of the fractal geometry. We show that the flat bands and their neighboring dispersive bands have remarkable features, the most interesting one being the spin-1 conical-type spectrum at the band center without any staggered magnetic flux, in contrast to the Kagome lattice. We furthermore investigate the effect of the magnetic flux in these lattice settings and show that different combinations of fluxes through such fractal unit cells lead to richer spectrum with a single isolated flat band or gapless electron- or hole-like flat bands. Finally, we discuss a possible experimental setup to engineer such fractal flat band network using single-mode laser-induced photonic waveguides.Comment: 8 pages, 9 figures, accepted versio

    Probing surface states exposed by crystal terminations at arbitrary orientations of three-dimensional topological insulators

    Full text link
    The topological properties of the bulk band structure of a three-dimensional topological insulator (TI) manifest themselves in the form of metallic surface states. In this paper, we propose a probe which directly couples to an exotic property of these surface states, namely the spin-momentum locking. We show that the information regarding the spin textures, so extracted, for different surfaces can be put together to reconstruct the parameters characterizing the bulk band structure of the material, hence acting as a hologram. For specific TI materials like, Bi2Se3,Bi2Te3and Sb2Te3\text{Bi}_2\text{Se}_3, \text{Bi}_2\text{Te}_3 \text{and Sb}_2\text{Te}_3, the planar surface states are distinct from one another with regard to their spectrum and the associated spin texture for each angle (θ\theta), which the normal to the surface makes with the crystal growth axis. We develop a tunnel Hamiltonian between such arbitrary surfaces and a spin polarized STM which provides a unique fingerprint of the dispersion and the associated spin texture corresponding to each θ\theta. Additionally, the theory presented in this article can be used to extract value of θ\theta for a given arbitrary planar surface from the STM spectra itself hence effectively mimicking X-ray spectroscopy.Comment: 11 pages, 8 figures, version accepted in Phys. Rev.
    • …
    corecore