719 research outputs found

    Solving the Bethe-Salpeter equation for bound states of scalar theories in Minkowski space

    Get PDF
    We apply the perturbation theory integral representation (PTIR) to solve for the bound state Bethe-Salpeter (BS) vertex for an arbitrary scattering kernel, without the need for any Wick rotation. The results derived are applicable to any scalar field theory (without derivative coupling). It is shown that solving directly for the BS vertex, rather than the BS amplitude, has several major advantages, notably its relative simplicity and superior numerical accuracy. In order to illustrate the generality of the approach we obtain numerical solutions using this formalism for a number of scattering kernels, including cases where the Wick rotation is not possible.Comment: 28 pages of LaTeX, uses psfig.sty with 5 figures. Also available via WWW at http://www.physics.adelaide.edu.au/theory/papers/ADP-97-10.T248-abs.html or via anonymous ftp at ftp://bragg.physics.adelaide.edu.au/pub/theory/ADP-97-10.T248.ps A number of (crucial) typographical errors in Appendix C corrected. To be published in Phys. Rev. D, October 199

    Does the effective Lagrangian for low-energy QCD scale?

    Full text link
    QCD is not an approximately scale invariant theory. Hence a dilaton field is not expected to provide a good description of the low-energy dynamics associated with the gluon condensate. Even if such a field is introduced, it remains almost unchanged in hadronic matter at normal densities. This is because the large glueball mass together with the size of the phenomenological gluon condensate ensure that changes to that condensate are very small at such densities. Any changes in hadronic masses and decay constants in matter generated by that condensate will be much smaller that those produced directly by changes in the quark condensate. Hence masses and decay constants are not expected to display a universal scaling.Comment: 7 pages (RevTeX), MC/TH 94/0

    Study of relativistic bound states for scalar theories in Bethe-Salpeter and Dyson-Schwinger formalism

    Full text link
    The Bethe-Salpeter equation for Wick-Cutkosky like models is solved in dressed ladder approximation. The bare vertex truncation of the Dyson-Schwinger equations for propagators is combined with the dressed ladder Bethe-Salpeter equation for the scalar S-wave bound state amplitudes. With the help of spectral representation the results are obtained directly in Minkowski space. We give a new analytic formula for the resulting equation simplifying the numerical treatment. The bare ladder approximation of Bethe-Salpeter equation is compared with the one with dressed ladder. The elastic electromagnetic form factors is calculated within the relativistic impulse approximation.Comment: 30 pages, 10 figures, accepted for publication in Phys. Rev.

    Systematic effects from an ambient-temperature, continuously-rotating half-wave plate

    Full text link
    We present an evaluation of systematic effects associated with a continuously-rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (CMB plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ~0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have reported. No significant dipole or quadrupole terms are detected; we constrain each to be <0.07% (95% confidence), limited by statistical uncertainty in our measurement. Dipole and quadrupole leakage at this level lead to systematic error on r<0.01 before any mitigation due to scan cross-linking or boresight rotation. The measured scalar leakage and the theoretical level of dipole and quadrupole leakage produce systematic error of r<0.001 for the ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously-rotating HWPs for future experiments.Comment: 11 pages, 8 figures; revision to submitted version, Fig. 5 and Eqs. (14) and (15) corrected; added Fig. 9 and description, text revisions for clarification, Fig. 5 revised for better calibration, corrected labeling errors and plotting bugs in Fig. 3, 4, and Eq. (14) and (15

    Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument

    Full text link
    We evaluate the modulation of Cosmic Microwave Background (CMB) polarization using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search (ABS). After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly-rotating HWP.Comment: 8 pages, 8 figures, Published in RSI under the title "Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    Microscopic calculations of stopping and flow from 160AMeV to 160AGeV

    Get PDF
    The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the ρ\rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.Comment: Proceedings of the Quark Matter '96 Conference, Heidelberg, German

    Scalar Mesons in a Chiral Quark Model with Glueball

    Get PDF
    Ground-state scalar isoscalar mesons and a scalar glueball are described in a U(3)xU(3) chiral quark model of the Nambu--Jona-Lasinio (NJL) type with 't Hooft interaction. The latter interaction produces singlet-octet mixing in the scalar and pseudoscalar sectors. The glueball is introduced into the effective meson Lagrangian as a dilaton on the base of scale invariance. The mixing of the glueball with scalar isoscalar quarkonia and amplitudes of their decays into two pseudoscalar mesons are shown to be proportional to current quark masses, vanishing in the chiral limit. Mass spectra of the scalar mesons and the glueball and their main modes of strong decay are described.Comment: 10 pages, LaTeX text, requires svjour.cls and svepj.cl

    Solving the Bethe-Salpeter Equation for Scalar Theories in Minkowski Space

    Get PDF
    The Bethe-Salpeter (BS) equation for scalar-scalar bound states in scalar theories without derivative coupling is formulated and solved in Minkowski space. This is achieved using the perturbation theory integral representation (PTIR), which allows these amplitudes to be expressed as integrals over weight functions and known singularity structures and hence allows us to convert the BS equation into an integral equation involving weight functions. We obtain numerical solutions using this formalism for a number of scattering kernels to illustrate the generality of the approach. It applies even when the na\"{\i}ve Wick rotation is invalid. As a check we verify, for example, that this method applied to the special case of the massive ladder exchange kernel reproduces the same results as are obtained by Wick rotation.Comment: 23 pages with 3 uuencoded, compressed Postscript figures. Entire manuscript available as a ps file at http://www.physics.adelaide.edu.au/theory/home.html . Also available at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-94-24.T164.p
    corecore