We present an evaluation of systematic effects associated with a
continuously-rotating, ambient-temperature half-wave plate (HWP) based on two
seasons of data from the Atacama B-Mode Search (ABS) experiment located in the
Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive
at 145 GHz. Here we present our in-field evaluation of celestial (CMB plus
galactic foreground) temperature-to-polarization leakage. We decompose the
leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar
leakage of ~0.01%, consistent with model expectations and an order of magnitude
smaller than other CMB experiments have reported. No significant dipole or
quadrupole terms are detected; we constrain each to be <0.07% (95% confidence),
limited by statistical uncertainty in our measurement. Dipole and quadrupole
leakage at this level lead to systematic error on r<0.01 before any mitigation
due to scan cross-linking or boresight rotation. The measured scalar leakage
and the theoretical level of dipole and quadrupole leakage produce systematic
error of r<0.001 for the ABS survey and focal-plane layout before any data
correction such as so-called deprojection. This demonstrates that ABS achieves
significant beam systematic error mitigation from its HWP and shows the promise
of continuously-rotating HWPs for future experiments.Comment: 11 pages, 8 figures; revision to submitted version, Fig. 5 and Eqs.
(14) and (15) corrected; added Fig. 9 and description, text revisions for
clarification, Fig. 5 revised for better calibration, corrected labeling
errors and plotting bugs in Fig. 3, 4, and Eq. (14) and (15