2 research outputs found
Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion
Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration
The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces
International audienceThe regulation of cellular force production relies on the complex interplay between a well-conserved set of proteins of the cytoskeleton: actin, myosin, and α-actinin. Despite our deep knowledge of the role of these proteins in force production at the molecular scale, our understanding of the biochemical regulation of the magnitude of traction forces generated at the entire-cell level has been limited, notably by the technical challenge of measuring traction forces and the endogenous biochemical composition in the same cell. In this study, we developed an alternative Traction-Force Microscopy (TFM) assay, which used a combination of hydrogel micropatterning to define cell adhesion and shape and an intermediate fixation/immunolabeling step to characterize strain energies and the endogenous protein contents in single epithelial cells. Our results demonstrated that both the signal intensity and the area of the Focal Adhesion (FA)–associated protein vinculin showed a strong positive correlation with strain energy in mature FAs. Individual contents from actin filament and phospho-myosin displayed broader deviation in their linear relationship to strain energies. Instead, our quantitative analyzes demonstrated that their relative amount exhibited an optimum ratio of phospho-myosin to actin, allowing maximum force production by cells. By contrast, although no correlation was identified between individual α-actinin content and strain energy, the ratio of α-actinin to actin filaments was inversely related to strain energy. Hence, our results suggest that, in the cellular model studied, traction-force magnitude is dictated by the relative numbers of molecular motors and cross-linkers per actin filament, rather than the amounts of an individual component in the cytoskeletal network. This assay offers new perspectives to study in more detail the complex interplay between the endogenous biochemical composition of individual cells and the force they produce