91 research outputs found

    Credit Supply: Are there negative spillovers from banks’ proprietary trading? (RM/19/005-revised-)

    Get PDF
    Following the global financial crisis, policy makers considered regulations that restrict banks’ activities which were motivated by concerns that banks use central bank borrowing, government guarantees, or subsidies to fund securities trading instead of lending to the real economy. Using a global sample of 132 major banks from 2003 to 2016, we find that banks’ securities trading is indeed associated with decreased loan supply. Effects are stronger for domestic lending markets, during crisis periods, and in countries with deeper financial markets. However, corporate capital expenditures and employment growth are unaffected, suggesting that policy makers’ concerns are only partly justified

    Combined Blockade of ADP Receptors and PI3-Kinase p110β Fully Prevents Platelet and Leukocyte Activation during Hypothermic Extracorporeal Circulation

    Get PDF
    Extracorporeal circulation (ECC) and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K) p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P2Y12 and P2Y1 blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P2Y12 antagonist 2-MeSAMP, the P2Y1 antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls). Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P2Y blockers (p<0.05), while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P2Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05). P2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05). Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P2Y and PI3K blockade (p<0.05). Combined blockade of P2Y12, P2Y1 and PI3K p110β completely inhibits hypothermic ECC-induced activation processes. This novel finding warrants further studies and the development of suitable pharmacological agents to decrease ECC- and hypothermia-associated complications in clinical applications

    Analysis of death in major trauma: value of prompt post mortem computed tomography (pmCT) in comparison to office hour autopsy

    Get PDF
    Background: To analyze diagnostic accuracy of prompt post mortem Computed Tomography (pmCT) in determining causes of death in patients who died during trauma room management and to compare the results to gold standard autopsy during office hours. Methods: Multiple injured patients who died during trauma room care were enrolled. PmCT was performed immediately followed by autopsy during office hours. PmCT and autopsy were analyzed primarily regarding pmCT ability to find causes of death and secondarily to define exact causes of death including accurate anatomic localizations. For the secondary analysis data was divided in group-I with equal results of pmCT and autopsy, group-II with autopsy providing superior results and group-III with pmCT providing superior information contributing to but not majorly causing death. Results: Seventeen multiple trauma patients were enrolled. Since multiple trauma patients were enrolled more injuries than patients are provided. Eight patients sustained deadly head injuries (47.1 %), 11 chest (64.7 %), 4 skeletal system (23.5 %) injuries and one patient drowned (5.8 %). Primary analysis revealed in 16/17 patients (94.1 %) causes of death in accordance with autopsy. Secondary analysis revealed in 9/17 cases (group-I) good agreement of autopsy and pmCT. In seven cases autopsy provided superior results (group-II) whereas in 1 case pmCT found more information (group-III). Discussion: The presented work studied the diagnostic value of pmCT in defining causes of death in comparison to standard autopsy. Primary analysis revealed that in 94.1% of cases pmCT was able to define causes of death even if only indirect signs were present. Secondary analysis showed that pmCT and autopsy showed equal results regarding causes of death in 52.9%. Conclusions: PmCT is useful in traumatic death allowing for an immediate identification of causes of death and providing detailed information on bony lesions, brain injuries and gas formations. It is advisable to conduct pmCT especially in cases without consent to autopsy to gain information about possible causes of death and to rule out possible clinical errors

    Properties of nickel-phosphorous coatings codeposited by the electroless and electrochemical plating process

    Get PDF
    At present, despite numerous studies and practical application, the process of chemical nickel plating remains imperfect. The low nickel deposition rate, the high consumption of the solution components, and the complexity of the deposition process do not contribute to the widespread use of chemical nickel plating. At the same time, chemically deposited coatings are significantly different from the electrochemical: they possess valuable properties. In the paper, the intensification method of chemical nickel plating considered through the use of the co-deposition process with chemical and electrochemical methods. The co-deposition was carried out in an acidic electrolyte solution on an aluminum plate with the stationary potential shift from - 0.01 to - 0.25 V with the use of three electrode system. The presented technique of intensification due to the combination of nickel deposition processes by chemical and electrochemical methods is able to increase the deposition rate of the coatings, and also allows influencing their composition and mechanical properties

    Simultaneous object detection and segmentation for patient‐specific markerless lung tumor tracking in simulated radiographs with deep learning

    Get PDF
    Background Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable. Deep learning-based approaches have shown promise for markerless tracking, but systematic evaluation and procedures to investigate applicability in individual cases are missing. Moreover, few efforts have been made to provide bounding box prediction and mask segmentation simultaneously, which could allow either rigid or deformable multi-leaf collimator tracking. Purpose The purpose of this study was to implement a deep learning-based markerless lung tumor tracking model exploiting patient-specific training which outputs both a bounding box and a mask segmentation simultaneously. We also aimed to compare the two kinds of predictions and to implement a specific procedure to understand the feasibility of markerless tracking on individual cases. Methods We first trained a Retina U-Net baseline model on digitally reconstructed radiographs (DRRs) generated from a public dataset containing 875 CT scans and corresponding lung nodule annotations. Afterwards, we used an independent cohort of 97 lung patients to develop a patient-specific refinement procedure. In order to determine the optimal hyperparameters for automatic patient-specific training, we selected 13 patients for validation where the baseline model predicted a bounding box on planning CT (PCT)-DRR with intersection over union (IoU) with the ground-truth higher than 0.7. The final test set contained the remaining 84 patients with varying PCT-DRR IoU. For each testing patient, the baseline model was refined on the PCT-DRR to generate a patient-specific model, which was then tested on a separate 10-phase 4DCT-DRR to mimic the intrafraction motion during treatment. A template matching algorithm served as benchmark model. The testing results were evaluated by four metrics: the center of mass (COM) error and the Dice similarity coefficient (DSC) for segmentation masks, and the center of box (COB) error and the DSC for bounding box detections. Performance was compared to the benchmark model including statistical testing for significance. Results A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing inconsistent (68%) and consistent (100%) success (defined as mean bounding box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-four testing cases had a PCT-DRR IoU above 0.2. For these 37 cases, the mean COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB error was 2.7 mm, and the mean box DSC was 0.83. Including the validation cases, the model was applicable to 50 out of 97 patients when using the PCT-DRR IoU threshold of 0.2. The inference time per frame was 170 ms. The model outperformed the benchmark model on all metrics, and the comparison was significant (p 0.2 cases, but not over the undifferentiated 84 testing cases. Conclusions The implemented patient-specific refinement approach based on a pre-trained baseline model was shown to be applicable to markerless tumor tracking in simulated radiographs for lung cases

    ExacTrac Dynamic workflow evaluation: Combined surface optical/thermal imaging and X‐ray positioning

    Get PDF
    In modern radiotherapy (RT), especially for stereotactic radiotherapy or stereotactic radiosurgery treatments, image guidance is essential. Recently, the ExacTrac Dynamic (EXTD) system, a new combined surface-guided RT and image-guided RT (IGRT) system for patient positioning, monitoring, and tumor targeting, was introduced in clinical practice. The purpose of this study was to provide more information about the geometric accuracy of EXTD and its workflow in a clinical environment. The surface optical/thermal- and the stereoscopic X-ray imaging positioning systems of EXTD was evaluated and compared to cone-beam computed tomography (CBCT). Additionally, the congruence with the radiation isocenter was tested. A Winston Lutz test was executed several times over 1 year, and repeated end-to-end positioning tests were performed. The magnitude of the displacements between all systems, CBCT, stereoscopic X-ray, optical-surface imaging, and MV portal imaging was within the submillimeter range, suggesting that the image guidance provided by EXTD is accurate at any couch angle. Additionally, results from the evaluation of 14 patients with intracranial tumors treated with open-face masks are reported, and limited differences with a maximum of 0.02 mm between optical/thermal- and stereoscopic X-ray imaging were found. As the optical/thermal positioning system showed a comparable accuracy to other IGRT systems, and due to its constant monitoring capability, it can be an efficient tool for detecting intra-fractional motion and for real-time tracking of the surface position during RT

    Offline and online LSTM networks for respiratory motion prediction in MR-guided radiotherapy

    Get PDF
    Objective. Gated beam delivery is the current clinical practice for respiratory motion compensation in MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-fractional motion using multileaf collimator tracking the total system latency needs to be accounted for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the prediction of superior–inferior tumor centroid positions extracted from clinically acquired 2D cine MRIs. Approach. We used 88 patients treated at the University Hospital of the LMU Munich for training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM and the LR were trained with offline (offline LSTM and offline LR) and online schemes (offline+online LSTM and online LR), the latter to allow for continuous adaptation to recent respiratory patterns. Main results. We found the offline+online LSTM to perform best for all investigated forecasts. Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and Gemelli testing set, respectively. Significance. This indicates that LSTM networks have potential as respiratory motion predictors and that continuous online re-optimization can enhance their performance

    Dementia care in the Danube Region. A multi-national expert survey

    Get PDF
    Background: Dementia is a particularly severe societal challenge in several countries of the Danube Region due to higher-than-average increment in population longevity, disproportionate increase of the old-age dependency ratio, and selective outward migration of health care professionals. A survey was conducted among dementia experts to obtain a deeper understanding of the dementia care structures and services in this geographical area, and to identify the educational needs of health care professionals, and the availability of assistive technology. ------ Subjects and methods: A standardized questionnaire was sent out to 15 leading dementia experts/clinicians in 10 Danube Region countries inquiring about professional groups involved in dementia care, availability and reimbursement of services, inclusion of dementia in professional education and training, acceptability of Internet-based education, and availability of assistive technology. The authors are the survey respondents. ----- Results: The majority of individuals with dementia receive care in the community rather than in institutions. The roles of medical specialties are disparate. General practitioners usually identify dementia symptoms while specialists contribute most to clinical diagnosis and treatment. Health care professionals, particularly those who work closely with patients and carers, have limited access to dementia-specific education and training. The greatest need for dementia-specific education is seen for general practitioners and nurses. An Internetbased education and skill-building program is considered to be equivalent to traditional faceto- face but offer advantages in terms of convenience of access. Assistive technology is available in countries of the Danube Region but is significantly underused. ----- Conclusion: Dementia care in the Danube Region can be improved by an educational and skill-building program for health care professionals who work in the frontline of dementia care. Such a program should also attempt to enhance interdisciplinary and intersectorial collaboration, to intensify the interaction between primary care and specialists, and to promote the implementation of assistive technology

    Memory Concerns, Memory Performance and Risk of Dementia in Patients with Mild Cognitive Impairment

    Get PDF
    Background: Concerns about worsening memory ("memory concerns"; MC) and impairment in memory performance are both predictors of Alzheimer's dementia (AD). The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI). Methods: We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n=305) vs. absence (n=112) of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models. Results: Risk of incident AD was increased by MC (HR=2.55, 95% CI: 1.33-4.89), lower memory performance (HR=0.63, 95% CI: 0.56-0.71) and ApoE4-genotype (HR=1.89, 95% CI: 1.18-3.02). An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment. Conclusions: Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI
    corecore