1,390 research outputs found

    Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars

    Full text link
    We present first results of a systematic investigation of the incomplete Paschen-Back effect in magnetic Ap stars. A short overview of the theory is followed by a demonstration of how level splittings and component strengths change with magnetic field strength for some lines of special astrophysical interest. Requirements are set out for a code which allows the calculation of full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I and V profiles of transitions in the multiplet 74 of FeII is discussed in some detail. It is shown that the incomplete Paschen-Back effect can lead to noticeable line shifts which strongly depend on total multiplet strength, magnetic field strength and field direction. Ghost components (which violate the normal selection rule on J) show up in strong magnetic fields but are probably unobservable. Finally it is shown that measurements of the integrated magnetic field modulus HsH_s are not adversely affected by the Paschen-Back effect, and that there is a potential problem in (magnetic) Doppler mapping if lines in the Paschen-Back regime are treated in the Zeeman approximation.Comment: 8 pages, 10 figures, to appear in MNRA

    Chemical abundance anticorrelations in globular cluster stars: The effect on cluster integrated spectra

    Full text link
    It is widely accepted that individual Galactic globular clusters harbor two coeval generations of stars, the first one born with the `standard' α\alpha-enhanced metal mixture observed in field Halo objects, the second one characterized by an anticorrelated CN-ONa abundance pattern overimposed on the first generation, α\alpha-enhanced metal mixture. We have investigated with appropriate stellar population synthesis models how this second generation of stars affects the integrated spectrum of a typical metal rich Galactic globular cluster, like 47\,Tuc, focusing our analysis on the widely used Lick-type indices. We find that the only indices appreciably affected by the abundance anticorrelations are Ca4227, G4300, CN1{\rm CN_1}, CN2{\rm CN_2} and NaD. The age-sensitive Balmer line, Fe line and the [MgFe] indices widely used to determine age, Fe and total metallicity of extragalactic systems are largely insensitive to the second generation population. Enhanced He in second generation stars affects also the Balmer line indices of the integrated spectra, through the change of the turn off temperature and -- in the assumption that the mass loss history of both stellar generations is the same -- the horizontal branch morphology of the underlying isochrones.Comment: Accepted for publication in Ap

    Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

    Full text link
    In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete

    Astrobiological Effects of F, G, K and M Main-Sequence Stars

    Full text link
    We focus on the astrobiological effects of photospheric radiation produced by main-sequence stars of spectral types F, G, K, and M. The photospheric radiation is represented by using realistic spectra, taking into account millions or hundred of millions of lines for atoms and molecules. DNA is taken as a proxy for carbon-based macromolecules, assumed to be the chemical centerpiece of extraterrestrial life forms. Emphasis is placed on the investigation of the radiative environment in conservative as well as generalized habitable zones.Comment: 3 pages, 3 figures; submitted to: Exoplanets: Detection, Formation and Dynamics, IAU Symposium 249, eds. Y.S. Sun and S. Ferraz-Mello (San Francisco: Astr. Soc. Pac.

    Analysis of B and Be Star Populations of the Double Cluster h and chi Persei

    Full text link
    We present blue optical spectra of 92 members of h and chi Per obtained with the WIYN telescope at Kitt Peak National Observatory. From these spectra, several stellar parameters were measured for the B-type stars, including V sin i, T_eff, log g_polar, M_star, and R_star. Stromgren photometry was used to measure T_eff and log g_polar for the Be stars. We also analyze photometric data of cluster members and discuss the near-to-mid IR excesses of Be stars.Comment: 4 pages, to appear in the proceedings of IAU Symposium 266: Star Cluster

    Including All the Lines

    Full text link
    I present a progress report on including all the lines in the linelists, including all the lines in the opacities, including all the lines in the model atmosphere and spectrum synthesis calculations, producing high-resolution, high-signal-to-noise atlases that show (not quite) all the lines, so that finally we can determine the properties of stars from a few of the lines.Comment: 9 pages, no figures. Presented at "Dimitrifest" conference in Boulder, Colorado, March 30 - April 3, 200

    The Origin of Enhanced Activity in the Suns of M67

    Full text link
    We report the results of the analysis of high resolution photospheric line spectra obtained with the UVES instrument on the VLT for a sample of 15 solar-type stars selected from a recent survey of the distribution of H and K chromospheric line strengths in the solar-age open cluster M67. We find upper limits to the projected rotation velocities that are consistent with solar-like rotation (i.e., v sini ~< 2-3 km/s) for objects with Ca II chromospheric activity within the range of the contemporary solar cycle. Two solar-type stars in our sample exhibit chromospheric emission well in excess of even solar maximum values. In one case, Sanders 1452, we measure a minimum rotational velocity of vsini = 4 +/- 0.5 km/s, or over twice the solar equatorial rotational velocity. The other star with enhanced activity, Sanders 747, is a spectroscopic binary. We conclude that high activity in solar-type stars in M67 that exceeds solar levels is likely due to more rapid rotation rather than an excursion in solar-like activity cycles to unusually high levels. We estimate an upper limit of 0.2% for the range of brightness changes occurring as a result of chromospheric activity in solar-type stars and, by inference, in the Sun itself. We discuss possible implications for our understanding of angular momentum evolution in solar-type stars, and we tentatively attribute the rapid rotation in Sanders 1452 to a reduced braking efficiency.Comment: accepted by Ap

    New ATLAS9 And MARCS Model Atmosphere Grids for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Full text link
    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H2O linelist, a wide range of carbon ([C/M]) and alpha element [alpha/M] variations, and solar reference abundances from Asplund et al. 2005. The added range of varying carbon and alpha element abundances also extends the previously calculated MARCS model grids. Altogether 1980 chemical compositions were used for the ATLAS9 grid, and 175 for the MARCS grid. Over 808 thousand ATLAS9 models were computed spanning temperatures from 3500K to 30000K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500K to 5500K, and log g from 0 to 5. All model atmospheres are publically available online.Comment: 8 pages, 6 figures, 5 tables, accepted for publication in The Astronomical Journa
    • …
    corecore