245 research outputs found

    A Commentary

    Get PDF
    17 USC 105 interim-entered record; under review.It is with great interest that we read the article on the twentyfirst-century hospital ship by the esteemed Rear Adm. (ret.) Michael Baker, Mr. Jacob Baker, and Capt. (ret.) Fred “Skip” Burkle. Many of the concepts they outline are viable options worth consideration, but the future hospital ship is only one piece of the system-based, integrated approach for projecting medical power in support of Naval superiority.Identified in text as U.S. Government work

    A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler

    Full text link
    We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally-induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at time scales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally-varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally-induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class and discuss the work required to accurately model these systems.Comment: 13 pages, submitted to Ap

    Tributes to Family Law Scholars Who Helped Us Find Our Path

    Get PDF
    At some point after the virus struck, I had the idea that it would be appropriate and interesting to ask a number of experienced family law teachers to write a tribute about a more senior family law scholar whose work inspired them when they were beginning their careers. I mentioned this idea to some other long-term members of the professoriate, and they agreed that this could be a good project. So I reached out to some colleagues and asked them to participate. Many agreed to join the team. Some suggested other potential contributors, and some of these suggested faculty members also agreed to submit a tribute. The authors have written about a diverse group of distinguished scholars in the area of family law. We have included 12 scholars who have contributed substantially to the field, and they have also influenced those who have written about them here. The honored scholars and the tribute authors are as follows (organized alphabetically by the honoree): Homer H. Clark Jr. (1918-2015), by Ann Laquer Estin Cooper Davis, by Melissa MurrayPeggy Mary Ann Glendon, by June Carbone Herma Hill Kay (1934-2017), by Barbara A. Atwood Robert Levy, by Paul M. Kurtz Marygold (Margo) Shire Melli (1926-2018), by J. Thomas Oldham & Bruce M. Smyth Martha Minow, by Brian H. Bix Robert Mnookin, by Elizabeth S. Scott Twila Perry, by R.A. Lenhardt Dorothy E. Roberts, by Jessica Dixon Weaver Carol Sanger, by Solangel Maldonado Barbara Bennett Woodhouse, by Sacha M. Coupet Each colleague who participated in this project chose the scholar whose work he or she would celebrate. So, the list of those honored here is subjective and, to a certain extent, serendipitous. This Article is part of a Family Law Quarterly issue that also honors other pioneering contributors to the family law field. We hope to make this a continuing project and to have future opportunities to recognize the many scholars who have had a profound impact on their students – and on all of us – in addition to having an important impact on the development of the law. I trust the reader will find these tributes of interest

    Yersinia pestis Evolution on a Small Timescale: Comparison of Whole Genome Sequences from North America

    Get PDF
    Yersinia pestis, the etiologic agent of plague, was responsible for several devastating epidemics throughout history and is currently of global importance to current public heath and biodefense efforts. Y. pestis is widespread in the Western United States. Because Y. pestis was first introduced to this region just over 100 years ago, there has been little time for genetic diversity to accumulate. Recent studies based upon single nucleotide polymorphisms have begun to quantify the genetic diversity of Y. pestis in North America.To examine the evolution of Y. pestis in North America, a gapped genome sequence of CA88-4125 was generated. Sequence comparison with another North American Y. pestis strain, CO92, identified seven regions of difference (six inversions, one rearrangement), differing IS element copy numbers, and several SNPs.The relatively large number of inverted/rearranged segments suggests that North American Y. pestis strains may be undergoing inversion fixation at high rates over a short time span, contributing to higher-than-expected diversity in this region. These findings will hopefully encourage the scientific community to sequence additional Y. pestis strains from North America and abroad, leading to a greater understanding of the evolutionary history of this pathogen

    Pan-parastagonospora comparative genome analysis-effector prediction and genome evolution

    Get PDF
    We report a fungal pan-genome study involving Parastagonospora spp., including 21 isolates of the wheat (Triticum aestivum) pathogen Parastagonospora nodorum, 10 of the grass-infecting Parastagonospora avenae, and 2 of a closely related undefined sister species. We observed substantial variation in the distribution of polymorphisms across the pan-genome, including repeat-induced point mutations, diversifying selection and gene gains and losses.We also discovered chromosome-scale inter and intraspecific presence/absence variation of some sequences, suggesting the occurrence of one or more accessory chromosomes or regions that may play a role in host-pathogen interactions. The presence of known pathogenicity effector loci SnToxA, SnTox1, and SnTox3 varied substantially among isolates. Three P. nodorum isolates lacked functional versions for all three loci, whereas three P. avenae isolates carried one or both of the SnTox1 and SnTox3 genes, indicating previously unrecognized potential for discovering additional effectors in the P. nodorum-wheat pathosystem. We utilized the pangenomic comparative analysis to improve the prediction of pathogenicity effector candidates, recovering the three confirmed effectors among our top-ranked candidates. We propose applying this pan-genomic approach to identify the effector repertoire involved in other host-microbe interactions involving necrotrophic pathogens in the Pezizomycotina

    Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis

    Get PDF
    Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I – A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between “WY96” and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis

    Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids

    Get PDF
    BACKGROUND: Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. METHODOLOGY/PRINCIPAL FINDINGS: Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. CONCLUSIONS/SIGNIFICANCE: Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum

    Appeals to evidence for the resolution of wicked problems: the origins and mechanisms of evidentiary bias

    Get PDF
    Wicked policy problems are often said to be characterized by their ‘intractability’, whereby appeals to evidence are unable to provide policy resolution. Advocates for ‘Evidence Based Policy’ (EBP) often lament these situations as representing the misuse of evidence for strategic ends, while critical policy studies authors counter that policy decisions are fundamentally about competing values, with the (blind) embrace of technical evidence depoliticizing political decisions. This paper aims to help resolve these conflicts and, in doing so, consider how to address this particular feature of problem wickedness. Specifically the paper delineates two forms of evidentiary bias that drive intractability, each of which is reflected by contrasting positions in the EBP debates: ‘technical bias’ - referring to invalid uses of evidence; and ‘issue bias’ - referring to how pieces of evidence direct policy agendas to particular concerns. Drawing on the fields of policy studies and cognitive psychology, the paper explores the ways in which competing interests and values manifest in these forms of bias, and shape evidence utilization through different mechanisms. The paper presents a conceptual framework reflecting on how the nature of policy problems in terms of their complexity, contestation, and polarization can help identify the potential origins and mechanisms of evidentiary bias leading to intractability in some wicked policy debates. The discussion reflects on whether being better informed about such mechanisms permit future work that may lead to strategies to mitigate or overcome such intractability in the future
    corecore