23 research outputs found

    Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes.

    Get PDF
    Epigenetics contributes to the pathogenesis of immune-mediated diseases like rheumatoid arthritis (RA). Here we show the first comprehensive epigenomic characterization of RA fibroblast-like synoviocytes (FLS), including histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3), open chromatin, RNA expression and whole-genome DNA methylation. To address complex multidimensional relationship and reveal epigenetic regulation of RA, we perform integrative analyses using a novel unbiased method to identify genomic regions with similar profiles. Epigenomically similar regions exist in RA cells and are associated with active enhancers and promoters and specific transcription factor binding motifs. Differentially marked genes are enriched for immunological and unexpected pathways, with "Huntington's Disease Signaling" identified as particularly prominent. We validate the relevance of this pathway to RA by showing that Huntingtin-interacting protein-1 regulates FLS invasion into matrix. This work establishes a high-resolution epigenomic landscape of RA and demonstrates the potential for integrative analyses to identify unanticipated therapeutic targets

    High Chromosome Number in hematological cancer cell lines is a Negative Predictor of Response to the inhibition of Aurora B and C by GSK1070916

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora kinases play critical roles in mitosis and are being evaluated as therapeutic targets in cancer. GSK1070916 is a potent, selective, ATP competitive inhibitor of Aurora kinase B and C. Translation of predictive biomarkers to the clinic can benefit patients by identifying the tumors that are more likely to respond to therapies, especially novel inhibitors such as GSK1070916.</p> <p>Methods</p> <p>59 Hematological cancer-derived cell lines were used as models for response where <it>in vitro </it>sensitivity to GSK1070916 was based on both time and degree of cell death. The response data was analyzed along with karyotype, transcriptomics and somatic mutation profiles to determine predictors of response.</p> <p>Results</p> <p>20 cell lines were sensitive and 39 were resistant to treatment with GSK1070916. High chromosome number was more prevalent in resistant cell lines (p-value = 0.0098, Fisher Exact Test). Greater resistance was also found in cell lines harboring polyploid subpopulations (p-value = 0.00014, Unpaired t-test). A review of NOTCH1 mutations in T-ALL cell lines showed an association between NOTCH1 mutation status and chromosome number (p-value = 0.0066, Fisher Exact Test).</p> <p>Conclusions</p> <p>High chromosome number associated with resistance to the inhibition of Aurora B and C suggests cells with a mechanism to bypass the high ploidy checkpoint are resistant to GSK1070916. High chromosome number, a hallmark trait of many late stage hematological malignancies, varies in prevalence among hematological malignancy subtypes. The high frequency and relative ease of measurement make high chromosome number a viable negative predictive marker for GSK1070916.</p

    A mechanism of T cell dependent selection of antigen engaged Germinal Center B cells.

    No full text
    A model of B cell affinity selection is proposed, and an explanation of peripheral tolerance mechanisms through antibody repertoire editing is presented. We show that affinity discrimination between B cells is driven by a competition between obtaining T cell help and removal of B cells from the light zone, either through apoptosis or by a return to the dark zone of germinal centers. We demonstrate that this mechanism also allows for the negative selection of self reactive B cells and maintenance of B cell tolerance during the Germinal Center reaction. Finally, we demonstrate that clonal expansion upon return to the Germinal Center dark zone amplifies differences in the antigen affinity of B cells that survive the light zone

    The Methyl-CpG Binding Protein MBD1 Interacts with the p150 Subunit of Chromatin Assembly Factor 1

    No full text
    DNA promoter hypermethylation has been shown to be a functional mechanism of transcriptional repression. This epigenetic gene silencing is thought to involve the recruitment of chromatin-remodeling factors, such as histone deacetylases, to methylated DNA via a family of proteins called methyl-CpG binding proteins (MBD1 to -4). MBD1, a member of this family, exhibits transcription-repressive activity, but to this point no interacting protein partners have been identified. In this study, we demonstrate that MBD1 partners with the p150 subunit of chromatin assembly factor 1 (CAF-1), forming a multiprotein complex that also contains HP1α. The MBD1-CAF-1 p150 interaction requires the methyl-CpG binding domain of MBD1, and the association occurs in the C terminus of CAF-1 p150. The two proteins colocalize to regions of dense heterochromatin in mouse cells, and overexpression of the C terminus of CAF-1 p150 prevents the targeting of MBD1 in these cells without disrupting global heterochromatin structure. This interaction suggests a role for MBD1 and CAF-1 p150 in methylation-mediated transcriptional repression and the inheritance of epigenetically determined chromatin states

    Enzymatic Regional Methylation Assay: A Novel Method to Quantify Regional CpG Methylation Density

    No full text
    We have developed a novel quantitative method for rapidly assessing the CpG methylation density of a DNA region in mammalian cells. After bisulfite modification of genomic DNA, the region of interest is PCR amplified with primers containing two dam sites (GATC). The purified PCR products are then incubated with (14)C-labeled S-adenosyl-L-methionine (SAM) and dam methyltransferase as an internal control to standardize DNA quantity. This is followed by an incubation with (3)H-labeled SAM and SssI methyltransferase for methylation quantification. By use of standard mixtures of cell line DNA with a defined methylation status in every assay, the ratio ((3)H/(14)C signal) of each sample can be converted into percentage values to assess the methylation density of the amplified sequence. This methylation-sensitive technique, termed ERMA (Enzymatic Regional Methylation Assay) provides several advantages over existing methods used for methylation analysis as it determines an exact measurement of the methylation density of the region studied. We demonstrate a use of this technique in determining the methylation density of the promoter region of the tumor suppressor gene p15(INK4B) and changes that occur after treatment with demethylating agents

    Combined Phosphatase and Tensin Homolog (PTEN) Loss and Fatty Acid Synthase (FAS) Overexpression Worsens the Prognosis of Chinese Patients with Hepatocellular Carcinoma

    Get PDF
    We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN), to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS) expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC). The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, &lt;em&gt;p&lt;/em&gt; &lt; 0.0001). Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, &lt;em&gt;p&lt;/em&gt; &lt; 0.0001). Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (&lt;em&gt;p&lt;/em&gt; = 0.043 for histological grades I–II &lt;em&gt;versus&lt;/em&gt; grade III). Loss of total PTEN was significantly correlated with FAS overexpression (&lt;em&gt;p&lt;/em&gt; = 0.014). Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (&lt;em&gt;p&lt;/em&gt; = 0.049). Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (&lt;em&gt;p&lt;/em&gt; = 0.011). Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS expression may offer a novel therapeutic approach for HCC
    corecore