37 research outputs found

    Antibody levels to multiple malaria vaccine candidate antigens in relation to clinical malaria episodes in children in the Kasena-Nankana district of Northern Ghana

    Get PDF
    BACKGROUND: Considering the natural history of malaria of continued susceptibility to infection and episodes of illness that decline in frequency and severity over time, studies which attempt to relate immune response to protection must be longitudinal and have clearly specified definitions of immune status. Putative vaccines are expected to protect against infection, mild or severe disease or reduce transmission, but so far it has not been easy to clearly establish what constitutes protective immunity or how this develops naturally, especially among the affected target groups. The present study was done in under six year old children to identify malaria antigens which induce antibodies that correlate with protection from Plasmodium falciparum malaria. METHODS: In this longitudinal study, the multiplex assay was used to measure IgG antibody levels to 10 malaria antigens (GLURP R0, GLURP R2, MSP3 FVO, AMA1 FVO, AMA1 LR32, AMA1 3D7, MSP1 3D7, MSP1 FVO, LSA-1and EBA175RII) in 325 children aged 1 to 6 years in the Kassena Nankana district of northern Ghana. The antigen specific antibody levels were then related to the risk of clinical malaria over the ensuing year using a negative binomial regression model. RESULTS: IgG levels generally increased with age. The risk of clinical malaria decreased with increasing antibody levels. Except for FMPOII-LSA, (p = 0.05), higher IgG levels were associated with reduced risk of clinical malaria (defined as axillary temperature ≥37.5°C and parasitaemia of ≥5000 parasites/ul blood) in a univariate analysis, upon correcting for the confounding effect of age. However, in a combined multiple regression analysis, only IgG levels to MSP1-3D7 (Incidence rate ratio = 0.84, [95% C.I.= 0.73, 0.97, P = 0.02]) and AMA1 3D7 (IRR = 0.84 [95% C.I.= 0.74, 0.96, P = 0.01]) were associated with a reduced risk of clinical malaria over one year of morbidity surveillance. CONCLUSION: The data from this study support the view that a multivalent vaccine involving different antigens is most likely to be more effective than a monovalent one. Functional assays, like the parasite growth inhibition assay will be necessary to confirm if these associations reflect functional roles of antibodies to MSP1-3D7 and AMA1-3D7 in this population

    Treatment for Schistosoma japonicum, Reduction of Intestinal Parasite Load, and Cognitive Test Score Improvements in School-Aged Children

    Get PDF
    Parasitic worm infections are associated with cognitive impairment and lower academic achievement for infected relative to uninfected children. However, it is unclear whether curing or reducing worm infection intensity improves child cognitive function. We examined the independent associations between: (i) Schistosoma japonicum infection-free duration, (ii) declines in single helminth species, and (iii) joint declines of ≥2 soil-transmitted helminth (STH) infections and improvements in four cognitive tests during18 months of follow-up. Enrolled were schistosome-infected school-aged children among whom coinfection with STH was common. All children were treated for schistosome infection only at enrolment with praziquantel. Children cured or schistosome-free for >12 months scored higher in memory and verbal fluency tests compared to persistently infected children. Likewise, declines of single and polyparasitic STH infections predicted higher scores in three of four tests. We conclude that reducing the intensity of certain helminth species and the frequency of multi-species STH infections may have long-term benefits for affected children's cognitive performance. The rapidity of schistosome re-infection and the ubiquity of concurrent multi-species infection highlight the importance of sustained deworming for both schistosome and STH infections to enhance the learning and educational attainment of children in helminth-endemic settings

    A Plasma Survey Using 38 PfEMP1 Domains Reveals Frequent Recognition of the Plasmodium falciparum Antigen VAR2CSA among Young Tanzanian Children

    Get PDF
    PfEMP1 proteins comprise a family of variant antigens that appear on the surface of P. falciparum-infected erythrocytes and bind to multiple host receptors. Using a mammalian expression system and BioPlex technology, we developed an array of 24 protein constructs representing 38 PfEMP1 domains for high throughput analyses of receptor binding as well as total and functional antibody responses. We analyzed the reactivity of 561 plasma samples from 378 young Tanzanian children followed up to maximum 192 weeks of life in a longitudinal birth cohort. Surprisingly, reactivity to the DBL5 domain of VAR2CSA, a pregnancy malaria vaccine candidate, was most common, and the prevalence of reactivity was stable throughout early childhood. Reactivity to all other PfEMP1 constructs increased with age. Antibodies to the DBL2βC2PF11_0521 domain, measured as plasma reactivity or plasma inhibition of ICAM1 binding, predicted reduced risk of hospitalization for severe or moderately severe malaria. These data suggest a role for VAR2CSA in childhood malaria and implicate DBL2βC2PF11_0521 in protective immunity

    Neglected Tropical Diseases outside the Tropics

    Get PDF
    Neglected Tropical Diseases (NTDs) have been targeted due to their prevalence and the burden of disease they cause globally, but there has been no significant focus in the literature on the subject of NTDs as a group in immigrants and travelers, and no specific studies on the emerging phenomenon of imported NTDs. We present the experience of a Tropical Medicine Unit in a major European city, over a 19-year period, describing and comparing NTDs diagnosed amongst immigrants, travelers and travelers visiting friends and relatives (VFRs). NTDs were diagnosed outside tropical areas and occurred more frequently in immigrants, followed by VFR travelers and then by other travelers. The main NTDs diagnosed in immigrants were onchocerciasis, Chagas disease and ascariasis; most frequent NTDs in travelers were schistosomiasis, onchocerciasis and ascariasis, and onchocerciasis and schistosomiasis in VFRs. Issues focusing on modes of transmission outside endemic areas and how eradication programs for some NTDs in endemic countries may have an impact in non-tropical Western countries by decreasing disease burden in immigrants, are addressed. Adherence to basic precautions such as safe consumption of food/water and protection against arthropod bites could help prevent many NTDs in travelers

    High Throughput Functional Assays of the Variant Antigen PfEMP1 Reveal a Single Domain in the 3D7 Plasmodium falciparum Genome that Binds ICAM1 with High Affinity and Is Targeted by Naturally Acquired Neutralizing Antibodies

    Get PDF
    Plasmodium falciparum–infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLβC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLβC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2βC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2βC2PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLβC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLβC2 domain. DBL2βC2PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2βC2PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses

    Adolescent health in rural Ghana: A cross-sectional study on the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors.

    Get PDF
    In sub-Saharan Africa, infectious diseases and malnutrition constitute the main health problems in children, while adolescents and adults are increasingly facing cardio-metabolic conditions. Among adolescents as the largest population group in this region, we investigated the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors (CRFs), and evaluated demographic, socio-economic and medical risk factors for these entities. In a cross-sectional study among 188 adolescents in rural Ghana, malarial infection, common infectious diseases and Body Mass Index were assessed. We measured ferritin, C-reactive protein, retinol, fasting glucose and blood pressure. Socio-demographic data were documented. We analyzed the proportions (95% confidence interval, CI) and the co-occurrence of infectious diseases (malaria, other common diseases), malnutrition (underweight, stunting, iron deficiency, vitamin A deficiency [VAD]), and CRFs (overweight, obesity, impaired fasting glucose, hypertension). In logistic regression, odds ratios (OR) and 95% CIs were calculated for the associations with socio-demographic factors. In this Ghanaian population (age range, 14.4-15.5 years; males, 50%), the proportions were for infectious diseases 45% (95% CI: 38-52%), for malnutrition 50% (43-57%) and for CRFs 16% (11-21%). Infectious diseases and malnutrition frequently co-existed (28%; 21-34%). Specifically, VAD increased the odds of non-malarial infectious diseases 3-fold (95% CI: 1.03, 10.19). Overlap of CRFs with infectious diseases (6%; 2-9%) or with malnutrition (7%; 3-11%) was also present. Male gender and low socio-economic status increased the odds of infectious diseases and malnutrition, respectively. Malarial infection, chronic malnutrition and VAD remain the predominant health problems among these Ghanaian adolescents. Investigating the relationships with evolving CRFs is warranted

    Altered Patterns of Gene Expression Underlying the Enhanced Immunogenicity of Radiation-Attenuated Schistosomes

    Get PDF
    Schistosoma mansoni is a blood-dwelling parasitic worm that causes schistosomiasis in humans throughout Africa and parts of South America. A vaccine would enhance attempts to control and eradicate the disease that currently relies on treatment with a single drug. Although a manufactured vaccine has yet to generate high levels of protection, this can be achieved with infective parasite larvae that have been disabled by exposure to radiation. How these weakened parasites are able to induce protective immunity when normal parasites do not, is the question addressed by our experiments. We have used a technique of gene expression profiling to compare the patterns in normal and disabled parasites, over the period when they would trigger an immune response in the host. We found that only a handful of genes were differentially expressed, all of them diminished in the disabled parasite. However, a more sensitive technique to examine groups of genes revealed that those involved in nervous system and muscle function were depressed in the disabled parasites. We suggest that reduced mobility of these larvae permits them longer contact with the immune system, thus enabling a strong protective immune response to develop

    Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons

    Get PDF
    BACKGROUND: Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. CONCLUSIONS/SIGNIFICANCE: Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species

    Density-Dependent Mortality of the Human Host in Onchocerciasis: Relationships between Microfilarial Load and Excess Mortality

    Get PDF
    Human onchocerciasis (River Blindness) is a parasitic disease leading to visual impairment including blindness. Blindness may lead to premature death, but infection with the parasite itself (Onchocerca volvulus) may also cause excess mortality in sighted individuals. The excess risk of mortality may not be directly (linearly) proportional to the intensity of infection (a measure of how many parasites an individual harbours). We analyze cohort data from the Onchocerciasis Control Programme in West Africa, collected between 1974 and 2001, by fitting a suite of quantitative models (including a ‘null’ model of no relationship between infection intensity and mortality, a (log-) linear function, and two plateauing curves), and choosing the one that is the most statistically adequate. The risk of human mortality initially increases with parasite density but saturates at high densities (following an S-shape curve), and such risk is greater in younger individuals for a given infection intensity. Our results have important repercussions for programmes aiming to control onchocerciasis (in terms of how the benefits of the programme are calculated), for measuring the burden of disease and mortality caused by the infection, and for a better understanding of the processes that govern the density of parasite populations among human hosts
    corecore