295 research outputs found

    Results from the Blazar Monitoring Campaign at the Whipple 10m Gamma-ray Telescope

    Full text link
    In September 2005, the observing program of the Whipple 10 m gamma-ray telescope was redefined to be dedicated almost exclusively to AGN monitoring. Since then the five Northern Hemisphere blazars that had already been detected at Whipple are monitored routinely each night that they are visible. Thanks to the efforts of a large number of multiwavelength collaborators, the first year of this program has been very successful. We report here on the analysis of Markarian 421 observations taken from November, 2005 to May, 2006 in the gamma-ray, X-ray, optical and radio bands.Comment: 4 pages; contribution to the 30th International Cosmic Ray Conference, Merida, Mexico, July 200

    Optical and Radio Variability of BL Lacertae

    Full text link
    We observed the prototype blazar, BL Lacertae, extensively in optical and radio bands during an active phase in the period 2010--2013 when the source showed several prominent outbursts. We searched for possible correlations and time lags between the optical and radio band flux variations using multifrequency data to learn about the mechanisms producing variability. During an active phase of BL Lacertae, we searched for possible correlations and time lags between multifrequency light curves of several optical and radio bands. We tried to estimate any possible variability timescales and inter-band lags in these bands. We performed optical observations in B, V, R and I bands from seven telescopes in Bulgaria, Georgia, Greece and India and obtained radio data at 36.8, 22.2, 14.5, 8 and 4.8 GHz frequencies from three telescopes in Ukraine, Finland and USA. Significant cross-correlations between optical and radio bands are found in our observations with a delay of cm-fluxes with respect to optical ones of ~250 days. The optical and radio light curves do not show any significant timescales of variability. BL Lacertae showed many optical 'mini-flares' on short time-scales. Variations on longer term timescales are mildly chromatic with superposition of many strong optical outbursts. In radio bands, the amplitude of variability is frequency dependent. Flux variations at higher radio frequencies lead the lower frequencies by days or weeks. The optical variations are consistent with being dominated by a geometric scenario where a region of emitting plasma moves along a helical path in a relativistic jet. The frequency dependence of the variability amplitude supports an origin of the observed variations intrinsic to the source.Comment: 10 pages, 9 figures, Accepted for publication in A&

    Multiband optical variability of the blazar OJ 287 during its outbursts in 2015 -- 2016

    Full text link
    We present recent optical photometric observations of the blazar OJ 287 taken during September 2015 -- May 2016. Our intense observations of the blazar started in November 2015 and continued until May 2016 and included detection of the large optical outburst in December 2016 that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of 9 ground based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of ~ 1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in March 2016. In addition, we investigated multi-band flux variations, colour variations, and spectral changes in the blazar on diverse timescales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour and spectral variability.Comment: 11 pages, 6 figures, 4 tables; Accepted for publication in MNRA

    Flaring radio lanterns along the ridge line: Long-term oscillatory motion in the jet of S5 1803 + 784

    Get PDF
    © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We present a detailed analysis of 30 very long baseline interferometric (VLBI) observations of the BL Lac object S5 1803+784 (z= 0.679), obtained between mean observational time 1994.67 and 2012.91 at observational frequency 15 GHz. The long-term behaviour of the jet ridge line reveals the jet experiences an oscillatory motion superposed on its helical jet kinematics on a time-scale of about 6 yr. The excess variance of the positional variability indicates the jet components being farther from the VLBI core have larger amplitude in their position variations. The fractional variability amplitude shows slight changes in 3 yrbins of the component's position. The temporal variability in the Doppler boosting of the ridge line results in jet regions behaving as flaring 'radio lanterns'. We offer a qualitative scenario leading to the oscillation of the jet ridge line that utilizes the orbital motion of the jet emitter black hole due to a binary black hole companion. A correlation analysis implies composite origin of the flux variability of the jet components, emerging due to possibly both the evolving jet structure and its intrinsic variability

    Characterizing optical variability of OJ 287 in 2016 - 2017

    Full text link
    We report on a recent multi-band optical photometric and polarimetric observational campaign of the blazar OJ 287 which was carried out during September 2016 -- December 2017. We employed nine telescopes in Bulgaria, China, Georgia, Japan, Serbia, Spain and the United States. We collected over 1800 photometric image frames in BVRI bands and over 100 polarimetric measurements over ~175 nights. In 11 nights with many quasi-simultaneous multi-band (V, R, I) observations, we did not detect any genuine intraday variability in flux or color. On longer timescales, multiple flaring events were seen. Large changes in color with respect to time and in a color--magnitude diagram were seen, and while only a weak systematic variability trend was noticed in color with respect to time, the color--magnitude diagram shows a bluer-when-brighter trend. Large changes in the degree of polarization, and substantial swings in the polarization angle were detected. The fractional Stokes parameters of the polarization showed a systematic trend with time in the beginning of these observations, followed by chaotic changes and then an apparently systematic variation at the end. These polarization changes coincide with the detection and duration of the source at very high energies as seen by VERITAS. The spectral index shows a systematic variation with time and V-band magnitude. We briefly discuss possible physical mechanisms that could explain the observed flux, color, polarization, and spectral variability.Comment: 16 pages, 8 figures, 7 tables; Accepted for Publication to A

    Another look at the BL Lacertae flux and spectral variability

    Get PDF
    The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral variability.Comment: 12 pages, 10 figures, accepted for publication in A&
    corecore