48 research outputs found

    The North Dakota preconditioning program

    Get PDF
    AS-696; The North Dakota Beef Cattle Improvement Association (BCIA) is continuing its leadership in supporting a CERTIFIED PRECONDITIONING PROGRAM for North Dakota calves. This program is also supported by the North Dakota Cattle Feeders Association, the North Dakota Cooperative Extension Service, the North Dakota Feed Manufacturers Association, the North Dakota Livestock Markets, the North Dakota Stockmen's Association and the North Dakota Verterinary Medical Association

    Recommended practices for the control of bovine respiratory disease in the cow-calf herd

    Get PDF
    V-733; This management guideline Is a joint effort between the National Cattlemen's Association (NCA) and the American Association of Bovine Practitioners(AABP). Cattlemen and veterinarians must continually contend with shipping fever and the respiratory disease complex. It Is good economic practice for their management systems to rely upon the most effective and proven disease prevention techniques

    Contribution of ribosomal residues to P-site tRNA binding

    Get PDF
    Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (koff) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNAfMet dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNAfMet interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (kon) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site

    Growth Response of Drought-Stressed Pinus sylvestris Seedlings to Single- and Multi-Species Inoculation with Ectomycorrhizal Fungi

    Get PDF
    Many trees species form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus) to investigate (i) whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii) whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry) were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase) than under dry conditions (twofold increase), indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Anthrax

    Get PDF
    A-561 (Revised

    Equine rhinopneumonitis

    Get PDF
    V-645; Equine Rhinopneumonitis is a Herpesvirus infection of horses. This circular focuses on the forms of the disease, causes and treatment

    Colostrum: is it needed by the newborn lamb?

    Get PDF
    V-73

    Foot rot in cattle

    Get PDF
    AS-593 (Revised
    corecore