719 research outputs found

    倉田稔著『若きヒルファディング』(丘書房 1984年 230頁)

    Get PDF

    Asymptotic solution of the Boltzmann-Krook equation for the Rayleigh flow

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1991.Title as it appears in the Feb. 1991 M.I.T. Graduate List: Asymptotic solution of the Boltzman-Krock equation for the Rayleigh flow.Includes bibliographical references (leaves 88-90).by Takuji Kurotaki.M.S

    Transient Receptor Potential Channel M4 and M5 in Magnocellular Cells in Rat Supraoptic and Paraventricular Nuclei

    Get PDF
    The neurohypophysial hormones, vasopressin (VP) and oxytocin (OT), are synthesised by magnocellular cells in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of the hypothalamus. The release of VP into the general circulation from the neurohypophysis increases during hyperosmolality, hypotension and hypovolaemia. VP neurones increase hormone release by increasing their firing rate as a result of adopting a phasic bursting. Depolarising after potentials (DAPs) following a series of action potentials are considered to be involved in the generation of the phasic bursts by summating to plateau potentials. We recently discovered a fast DAP (fDAP) in addition to the slower DAP characterised previously. Almost all VP neurones expressed the fDAP, whereas only 16% of OT neurones had this property, which implicates the involvement of fDAP in the generation of the firing patterns in VP neurones. Our findings obtained from electrophysiological experiments suggested that the ionic current underlying the fDAP is mediated by those of two closely-related Ca 2+-activated cation channels: the melastatin-related subfamily of transient receptor potential channels, TRPM4 and TRPM5. In the present study, double/triple immunofluorescence microscopy and reverse transcriptase-polymerase chain reaction techniques were employed to evaluate whether TRPM4 and TRPM5 are specifically located in VP neurones. Using specific antibodies against these channels, TRPM5 immunoreactivity was found almost exclusively in VP neurones, but not in OT neurones in both the SON and PVN. The most prominent TRPM5 immunoreactivity was in the dendrites of VP neurones. By contrast, most TRPM4 immunoreactivity occurred in cell bodies of both VP and OT neurones. TRPM4 and TRPM5 mRNA were both found in a cDNA library derived from SON punches. These results indictate the possible involvement of TRPM5 in the generation of the fDAP, and these channels may play an important role in determining the distinct firing properties of VP neurones in the SON. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd

    Differential expression of topoisomerase IIα protein in salivary gland carcinomas: histogenetic and prognostic implications

    Get PDF
    BACKGROUND: Salivary gland carcinomas are relatively uncommon heterogeneous malignancies characterized by locoregional invasion and distant metastasis. Topoisomerase IIα (topoIIα), located at chromosome 17q21-22, is considered a major mediator of cell proliferation and DNA replication. The purpose of this study was to evaluate the expression of topoIIα in various types of salivary gland tumors and its biological significance. METHODS: The protein expression of topoIIα was evaluated immunohistochemically in formalin-fixed, paraffin-embedded tissue from 54 salivary gland carcinomas and 20 benign tumors (10 pleomorphic adenomas and 10 Warthin's tumors). The primary salivary gland carcinoma specimens consisted of 17 adenoid cystic carcinomas, 7 adenocarcinomas not otherwise specified, 7 mucoepidermoid carcinomas, 6 salivary duct carcinomas, 3 acinic cell carcinomas, 3 carcinomas ex pleomorphic adenomas, 3 epithelial-myoepithelial carcinomas, 2 carcinosarcomas, 2 lymphoepithelial carcinomas, 2 myoepithelial carcinomas, 1 oncocytic carcinoma, and 1 squamous cell carcinoma. The associations between clinicopathological factors and outcome were analyzed. RESULTS: Of the 54 primary salivary gland carcinomas, 38 (70%) showed positive expression (≥10%) of topoIIα protein, and 16 carcinomas (30%) and all benign tumors were negative (p < 0.001). Expression of topoIIα was more frequently observed in salivary duct carcinoma, carcinoma ex pleomorphic adenoma, adenocarcinoma, and adenoid cystic carcinoma, solid type, and it was associated with advanced stage and shortened survival. CONCLUSION: The results of the present study suggest that topoIIα expression is associated with histologically aggressive subtypes and shortened survival. Furthermore, it may provide useful prognostic information and suggests the potential efficacy of topoIIα-targeting therapy in patients with salivary gland carcinoma

    Swedish Auxiliary Verb “vilja” and the Future Tense

    No full text

    Activity-dependent cleavage of dyskinesia-related proline-rich transmembrane protein 2 (PRRT2) by calpain in mouse primary cortical neurons

    Get PDF
    Mutations of PRRT2 (proline-rich transmembrane protein 2) cause several neurological disorders, represented by paroxysmal kinesigenic dyskinesia (PKD), which is characterized by attacks of involuntary movements triggered by sudden voluntary movements. PRRT2 is reported to suppress neuronal excitation, but it is unclear how the function of PRRT2 is modulated during neuronal excitation. We found that PRRT2 is processed to a 12 kDa carboxy-terminal fragment (12K-CTF) by calpain, a calcium-activated cysteine protease, in a neuronal activity-dependent manner, predominantly via NMDA receptors or voltage-gated calcium channels. Furthermore, we clarified that 12K-CTF is generated by sequential cleavages at Q220 and S244. The amino-terminal fragment (NTF) of PRRT2, which corresponds to PKD-related truncated mutants, is not detected, probably due to rapid cleavage at multiple positions. Given that 12K-CTF lacks most of the proline-rich domain, this cleavage might be involved in the activity-dependent enhancement of neuronal excitation perhaps through transient retraction of PRRT2\u27s function. Therefore, PRRT2 might serve as a buffer for neuronal excitation, and lack of this function in PKD patients might cause neuronal hyperexcitability in their motor circuits
    corecore