576 research outputs found

    Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Get PDF
    Arctic ozone depletion events (ODEs) are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC), and the Arctic Intensive Ozonesonde Network Study (ARCIONS) experiments (April 2008). Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2) measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde) measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day) transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles) and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km) at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free-tropospheric BrO through convective transport and explain the significant negative correlation between free-tropospheric ozone and tropospheric BrO column at this site

    Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

    Get PDF
    Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995-2001) of HCHO column data for North America from the Global Ozone Monitoring Experiment (GOME), and show that the general seasonal and interannual variability of these data is consistent with knowledge of isoprene emission. There are some significant regional discrepancies with the seasonal patterns predicted from current isoprene emission models, and we suggest that these may reflect flaws in the models. The interannual variability of HCHO columns observed by GOME appears to follow the interannual variability of surface temperature, as expected from current isoprene emission models

    Collisions of cold magnesium atoms in a weak laser field

    Full text link
    We use quantum scattering methods to calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no hyperfine structure to complicate the theoretical studies. We evaluate both the radiative and nonradiative mechanisms of trap loss. The radiative escape mechanism via allowed 1Sigma_u excitation is dominant for more than about one atomic linewidth detuning. Molecular vibrational structure due to photoassociative transitions to bound states begins to appear beyond about ten linewidths detuning.Comment: 4 pages with 3 embedded figure

    A New Soldier-Producing Aphid Species, Pseudoregma baenzigeri, sp. nov., from Northern Thailand

    Get PDF
    Pseudoregma baenzigeri, sp. nov., is described from northern Thailand. This species forms dense, huge colonies on shoots of the bamboo Dendrocalamus sp., and produces many first-instar, pseudoscorpion-like soldiers. Alate sexuparae were found from the end of September to mid October. Two syrphids, Eupeodes sp. A (allied to E. confrater) and Dideoides chrysotoxoides, and the pyralid Dipha aphidivora were recorded as predators of P. baenzigeri. The aphids were also likely to be eaten by some rodents. The apterous adult, nymphs, soldier and alate sexupara of P. baenzigeri can be distinguished from those of the other congeners by the longer, conical ultimate rostral segment. A tentative key to the species of Pseudoregma living on bamboo is provided

    Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Get PDF
    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo \u3e0.7), for solar zenith angl

    Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS

    Get PDF
    A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time high latitude troposphere based on aircraft and satellite measurements of bromine oxide (BrO) and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spectrometer (CIMS) to measure BrO and a mist chamber (MC) to measure soluble bromide. We have determined that the MC detection efficiency to molecular bromine (Br2), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide (HBr) as soluble bromide (Br−) was 0.9±0.1, 1.06+0.30/−0.35, 0.4±0.1, and 0.95±0.1, respectively. These efficiency factors were used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008 from photochemical calculations constrained to in situ BrO measured by CIMS. During this flight, the highest levels of soluble bromide and BrO were observed and atmospheric conditions were ideal for the space-borne observation of BrO. The good agreement (R2 = 0.76; slope = 0.95; intercept = −3.4 pmol mol−1) between modeled and observed soluble bromide, when BrO was above detection limit (\u3e2 pmol mol−1) under unpolluted conditions (NOmol−1), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide and that a well characterized MC can be used to derive mixing ratios of some reactive bromine compounds. Tropospheric BrO vertical column densities (BrOVCD) derived from CIMS BrO observations compare well with BrOTROPVCD from OMI on 17 April 2008

    Designing Chatbots for Crises: A Case Study Contrasting Potential and Reality

    No full text
    Chatbots are becoming ubiquitous technologies, and their popularity and adoption are rapidly spreading. The potential of chatbots in engaging people with digital services is fully recognised. However, the reputation of this technology with regards to usefulness and real impact remains rather questionable. Studies that evaluate how people perceive and utilise chatbots are generally lacking. During the last Kenyan elections, we deployed a chatbot on Facebook Messenger to help people submit reports of violence and misconduct experienced in the polling stations. Even though the chatbot was visited by more than 3,000 times, there was a clear mismatch between the users’ perception of the technology and its design. In this paper, we analyse the user interactions and content generated through this application and discuss the challenges and directions for designing more effective chatbots

    A new interpretation of total column BrO during Arctic spring

    Get PDF
    Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO “hotspots” during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere

    DPAGT1 Inhibitors of Capuramycin Analogues and Their Antimigratory Activities of Solid Tumors

    Get PDF
    Capuramycin displays a narrow spectrum of antibacterial activity by targeting bacterial translocase I (MraY). In our program of development of new N-acetylglucosaminephosphotransferase1 (DPAGT1) inhibitors, we have identified that a capuramycin phenoxypiperidinylbenzylamide analogue (CPPB) inhibits DPAGT1 enzyme with an IC₅₀ value of 200 nM. Despite a strong DPAGT1 inhibitory activity, CPPB does not show cytotoxicity against normal cells and a series of cancer cell lines. However, CPPB inhibits migrations of several solid cancers including pancreatic cancers that require high DPAGT1 expression in order for tumor progression. DPAGT1 inhibition by CPPB leads to a reduced expression level of Snail but does not reduce E-cadherin expression level at the IC₅₀ (DPAGT1) concentration. CPPB displays a strong synergistic effect with paclitaxel against growth-inhibitory action of a patient-derived pancreatic adenocarcinoma, PD002: paclitaxel (IC₅₀: 1.25 μM) inhibits growth of PD002 at 0.0024–0.16 μM in combination with 0.10–2.0 μM CPPB (IC₅₀: 35 μM)
    corecore