1,248 research outputs found

    Study to develop gradiometer techniques

    Get PDF
    The primary goal of the current gravity gradiometer research at Stanford has been to establish the feasibility of using a gravity gradiometer with 1 E accuracy, as the primary sensor in various applications. The two applications considered here in detail are geodesy missions and inertial navigation systems. Preliminary sections on gravity models and gravity gradiometer bias estimation are also included

    Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films

    Get PDF
    The effect of grain size on the thermoelectric properties of n-type nanocrystalline bismuth-telluridebased thin films is investigated. We prepare the nanocrystalline thin films with average grain sizesof 10, 27, and 60 nm by a flash-evaporation method followed by a hydrogen annealing process. Thethermoelectric properties, in terms of the thermal conductivity by a differential 3 method, theelectrical conductivity, and the Seebeck coefficient are measured at room temperature and used toevaluate the figure of merit. The minimum thermal conductivity is 0.61 W m−1 K−1 at the averagegrain size of 10 nm. We also estimate the lattice thermal conductivity of the nanocrystalline thinfilms and compare it with a simplified theory of phonon scattering on grain boundaries. Fornanosized grains, the lattice thermal conductivity of nanocrystalline thin films decreases rapidly forsmaller grains, corresponding to the theoretical calculation. The figure of merit is also decreased asthe grain size decreases, which is attributed to the increased number of defects at the grainboundaries

    Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution

    Get PDF
    Recent ground networks and satellite remote-sensing observations have provided useful data related to spatial and vertical distributions of mineral dust particles in the atmosphere. However, measurements of temporal variations and spatial distributions of mineral dust deposition fluxes are limited in terms of their duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition using wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyser. Wet and dry deposition fluxes of mineral dusts were both high in spring and low in summer, showing similar seasonal variations to frequency of aeolian dust events (Kosa) in Japan. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m<sup>−2</sup> yr<sup>−1</sup>) and at Cape Hedo (1.7 g m<sup>−2</sup> yr<sup>−1</sup>) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (> 60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m<sup>−2</sup> yr<sup>−1</sup>) and at Cape Hedo (2.0 g m<sup>−2</sup> yr<sup>−1</sup>) as average values in 2009 and 2010. The average ratio of wet and dry deposition fluxes was the highest at Toyama (3.3) and the lowest at Hedo (0.82), showing a larger contribution of the dry process at western sites, probably because of the distance from desert source regions and because of the effectiveness of the wet process in the dusty season. <br><br> Size distributions of refractory dust particles were obtained using four-stage filtration: > 20, > 10, > 5, and > 1 μm diameter. Weight fractions of the sum of > 20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions generally decreased with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Based on temporal variations of PM<sub>c</sub> (2.5 < <i>D</i> < 10 μm), ground-based lidar, backward air trajectories, and vertical profiles of potential temperatures, transport processes of dust particles are discussed for events with high-deposition and low-deposition flux with high PM<sub>c</sub>. Low dry dust depositions with high PM<sub>c</sub> concentrations were observed under stronger (5 K km<sup>−1</sup>) stratification of potential temperature with thinner and lower (< 2 km) dust distributions because the PM<sub>c</sub> fraction of dust particles only survived after depletion of giant dust particles by rapid gravitational settling at the time they reach Japan. In contrast, transport through a thicker (> 2 km) dust layer with weak vertical gradient of potential temperature carry more giant dust particles to Japan. Because giant dust particles are an important mass fraction of dust accumulation, especially in the North Pacific, which is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height and fraction of giant dust particles are important factors for studying dust budgets in the atmosphere and their role in biogeochemical cycles

    A new common functional coding variant at the DDC gene change renal enzyme activity and modify renal dopamine function.

    Get PDF
    The intra-renal dopamine (DA) system is highly expressed in the proximal tubule and contributes to Na+ and blood pressure homeostasis, as well as to the development of nephropathy. In the kidney, the enzyme DOPA Decarboxylase (DDC) originating from the circulation. We used a twin/family study design, followed by polymorphism association analysis at DDC locus to elucidate heritable influences on renal DA production. Dense single nucleotide polymorphism (SNP) genotyping across the DDC locus on chromosome 7p12 was analyzed by re-sequencing guided by trait-associated genetic markers to discover the responsible genetic variation. We also characterized kinetics of the expressed DDC mutant enzyme. Systematic polymorphism screening across the 15-Exon DDC locus revealed a single coding variant in Exon-14 that was associated with DA excretion and multiple other renal traits indicating pleiotropy. When expressed and characterized in eukaryotic cells, the 462Gln variant displayed lower Vmax (maximal rate of product formation by an enzyme) (21.3 versus 44.9 nmol/min/mg) and lower Km (substrate concentration at which half-maximal product formation is achieved by an enzyme.)(36.2 versus 46.8 μM) than the wild-type (Arg462) allele. The highly heritable DA excretion trait is substantially influenced by a previously uncharacterized common coding variant (Arg462Gln) at the DDC gene that affects multiple renal tubular and glomerular traits, and predicts accelerated functional decline in chronic kidney disease

    Spin-Wave Theory of the Multiple-Spin Exchange Model on a Triangular Lattice in a Magnetic Field : 3-Sublattice Structures

    Full text link
    We study the spin wave in the S=1/2 multiple-spin exchange model on a triangular lattice in a magnetic field within the linear spin-wave theory. We take only two-, three- and four-spin exchange interactions into account and restrict ourselves to the region where a coplanar three-sublattice state is the mean-field ground state. We found that the Y-shape ground state survives quantum fluctuations and the phase transition to a phase with a 6-sublattice structure occurs with softening of the spin wave. We estimated the quantum corrections to the ground state sublattice magnetizations due to zero-point spin-wave fluctuations.Comment: 8 pages, 20 figure
    corecore