14 research outputs found

    カルシウムスパークは上皮層での組織流動性を亢進し、変異細胞の管腔側への逸脱を促進する

    Get PDF
    京都大学新制・課程博士博士(医科学)甲第24533号医科博第147号新制||医科||10(附属図書館)京都大学大学院医学研究科医科学専攻(主査)教授 篠原 隆司, 教授 松田 道行, 教授 伊藤 貴浩学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Calcium sparks enhance the tissue fluidity within epithelial layers and promote apical extrusion of transformed cells

    Get PDF
    In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition

    ADAM-like Decysin-1 (ADAMDEC1) is a positive regulator of Epithelial Defense Against Cancer (EDAC) that promotes apical extrusion of RasV12-transformed cells

    Get PDF
    Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelia via cell competition with the surrounding normal epithelial cells. However, it remains unknown whether and how soluble factors are involved in this cancer preventive phenomenon. By performing stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometric analyses, we have identified ADAM-like Decysin-1(ADAMDEC1) as a soluble protein whose expression is upregulated in the mix culture of normal and RasV12-transformed epithelial cells. Expression of ADAMDEC1 is elevated in normal epithelial cells co-cultured with RasV12 cells. Knockdown of ADAMDEC1 in the surrounding normal cells substantially suppresses apical extrusion of RasV12 cells, suggesting that ADAMDEC1 secreted by normal cells positively regulate the elimination of the neighboring transformed cells. In addition, we show that the metalloproteinase activity of ADAMDEC1 is dispensable for the regulation of apical extrusion. Furthermore, ADAMDEC1 facilitates the accumulation of filamin, a crucial regulator of Epithelial Defense Against Cancer (EDAC), in normal cells at the interface with RasV12 cells. This is the first report demonstrating that an epithelial intrinsic soluble factor is involved in cell competition in mammals

    The COX-2/PGE(2) pathway suppresses apical elimination of RasV12-transformed cells from epithelia

    No full text
    At the initial stage of carcinogenesis, when RasV12-transformed cells are surrounded by normal epithelial cells, RasV12 cells are apically extruded from epithelia through cell competition with the surrounding normal cells. In this study, we demonstrate that expression of cyclooxygenase (COX)-2 is upregulated in normal cells surrounding RasV12-transformed cells. Addition of COX inhibitor or COX-2-knockout promotes apical extrusion of RasV12 cells. Furthermore, production of Prostaglandin (PG) E-2, a downstream prostanoid of COX-2, is elevated in normal cells surrounding RasV12 cells, and addition of PGE(2) suppresses apical extrusion of RasV12 cells. In a cell competition mouse model, expression of COX-2 is elevated in pancreatic epithelia harbouring RasV12-exressing cells, and the COX inhibitor ibuprofen promotes apical extrusion of RasV12 cells. Moreover, caerulein-induced chronic inflammation substantially suppresses apical elimination of RasV12 cells. These results indicate that intrinsically or extrinsically mediated inflammation can promote tumour initiation by diminishing cell competition between normal and transformed cells. Sato et al find that in an epithelial cell sheet containing some RasV12-transformed cells, expression of cyclooxygenase-2 and production of its downstream product prostaglandin E2 are increased in normal cells surrounding transformed cells, and suppress extrusion of the latter. This study sheds light on how transformed cells are eliminated from epithelia

    Calcium Wave Promotes Cell Extrusion

    Get PDF
    When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion

    FBP17-mediated finger-like membrane protrusions in cell competition between normal and RasV12-transformed cells

    No full text
    At the initial stage of carcinogenesis, cell competition often occurs between newly emerging transformed cells and the neighboring normal cells, leading to the elimination of transformed cells from the epithelial layer. For instance, when RasV12-transformed cells are surrounded by normal cells, RasV12 cells are apically extruded from the epithelium. However, the underlying mechanisms of this tumor-suppressive process still remain enigmatic. We first show by electron microscopic analysis that characteristic finger-like membrane protrusions are projected from both normal and RasV12 cells at their interface. In addition, FBP17, a member of the F-BAR proteins, accumulates in RasV12 cells, as well as surrounding normal cells, which plays a positive role in the formation of finger-like protrusions and apical elimination of RasV12 cells. Furthermore, cdc42 acts upstream of these processes. These results suggest that the cdc42/FBP17 pathway is a crucial trigger of cell competition, inducing “protrusion to protrusion response” between normal and RasV12-transformed cells
    corecore