47 research outputs found

    What is the location and extent of pathology in surgical cases of chronic biceps tendinopathy undergoing subpectoral bicep tenodesis?

    Get PDF
    The proximal aspect of the long head of the biceps brachii (LHBB) has long been implicated as a pain generator in the shoulder. Biceps tenodesis is one surgical treatment option for refractory biceps tendonitis. The purpose of this study was to examine the tendinopathic changes in the intra-articular segment of long head of the biceps tendon as well as all three zones of the bicipital tunnel in a cohort of patients with chronic refractory biceps symptoms

    Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs

    Get PDF
    BACKGROUND: Osteoarthritis (OA) is a progressive and debilitating disease that often develops from a focal lesion and may take years to clinically manifest to a complete loss of joint structure and function. Currently, there is not a cure for OA, but early diagnosis and initiation of treatment may dramatically improve the prognosis and quality of life for affected individuals. This study was designed to determine the feasibility of analyzing changes in gene expression of articular cartilage using the Pond-Nuki model two weeks after ACL-transection in dogs, and to characterize the changes observed at this time point. METHODS: The ACL of four dogs was completely transected arthroscopically, and the contralateral limb was used as the non-operated control. After two weeks the dogs were euthanatized and tissues harvested from the tibial plateau and femoral condyles of both limbs. Two dogs were used for histologic analysis and Mankin scoring. From the other two dogs the surface of the femoral condyle and tibial plateau were divided into four regions each, and tissues were harvested from each region for biochemical (GAG and HP) and gene expression analysis. Significant changes in gene expression were determined using REST-XL, and Mann-Whitney rank sum test was used to analyze biochemical data. Significance was set at (p < 0.05). RESULTS: Significant differences were not observed between ACL-X and control limbs for Mankin scores or GAG and HP tissue content. Further, damage to the tissue was not observed grossly by India ink staining. However, significant changes in gene expression were observed between ACL-X and control tissues from each region analyzed, and indicate that a unique regional gene expression profile for impending ACL-X induced joint pathology may be identified in future studies. CONCLUSION: The data obtained from this study lend credence to the research approach and model for the characterization of OA, and the identification and validation of future diagnostic modalities. Further, the changes observed in this study may reflect the earliest changes in AC reported during the development of OA, and may signify pathologic changes within a stage of disease that is potentially reversible

    地震発生帯における深部掘削孔を用いた長期計測

    Get PDF
    Large earthquakes occur frequently in subduction zones. Most earthquakes are generated in the seismogenic zone, a fairly limited area confined to the shallower regions of the subduction plate boundary. To understand the processes of earthquake generation, it is essential to monitor the physical and mechanical properties of the seismogenic zone over long periods. At present, there are no deep borehole observations of the seismogenic zone more than 3km below seafloor, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in 2003, plans to drill boreholes beneath the ocean floor using a multiple-drilling platform operation. The IODP riser-quipped drilling ship (Chikyu) enables the emplacement of boreholes up to 0km beneath the ocean floor, and will provide opportunities to conduct long-term deep borehole observations in the seismogenic zone. Long-term borehole observations in the seismogenic zone are expected to require the development of advanced sampling, monitoring, and recording technology. Here, we discuss the scientific objectives, engineering and technical challenges, and experimental design for a deep borehole, long-term deepborehole monitoring system aimed at understanding the processes of earthquake generation in the seismogenic zone of subduction plate boundaries. We focus specifically on the relationships between environmental conditions in the deep subsurface, details of monitoring and recording, and design and implementation of scientific tools and programs

    In Vivo Evaluation of 13-93 Bioactive Glass Scaffolds with Trabecular and Oriented Microstructures in a Subcutaneous Rat Implantation Model

    No full text
    The ability of two groups of 13-93 bioactive glass scaffolds to support tissue ingrowth was evaluated after implantation for 4 weeks into subcutaneous pockets in the dorsum of Fisher 344 rats. One group of scaffolds (porosity = 85%; pore size = 100-500 microm) had a trabecular microstructure similar to that of dry human trabecular bone, whereas the other group had a columnar microstructure of oriented pores (porosity = 65%; pore width = 90-110 microm). Despite the lower porosity and pore width, the columnar scaffolds supported abundant soft tissue ingrowth (glycosaminoglycan and fibrillar stroma), whereas the trabecular scaffolds showed only limited tissue ingrowth. when seeded with mesenchymal stem cells (MSCs), both groups of scaffolds supported abundant tissue infiltration. Bone-like tissue was formed in both groups of scaffolds seeded with MSCs, but not in the scaffolds without MSCs. the new tissues integrated with the hydroxyapatite-like surface layer of the scaffolds which resulted from the conversion of the bioactive glass in the body fluids. the results indicate that the trabecular bioactive glass scaffolds seeded with MSCs, as well as the columnar bioactive glass scaffolds, seeded with MSCs or unseeded, could serve as substrates for bone repair and regeneration

    Extraction for Frequent Sequential Patterns with Minimum Varaible-Wildcard Regions

    No full text
    Abstract A new methodology for extracting all frequent sequential patterns with minimum variable-length wildcard regions from sequence databases in order to extract candidates of a motif from amino acid sequences is proposed. A scope database defined by the k-length pattern consists of not only the projected database including the start position of a scan but also the range of the scan and occurrences corresponding to evidence for the pattern. The scope database makes it possible to avoid the construction of the variable-length wildcard region that is too large to explain occurrences corresponding to evidence for each (k+1)-length pattern. Moreover, redundancy is also eliminated for the set of solutions using the scope database. Furthermore, the prototype has been applied to the evaluation of a dataset that includes the Leucine Zipper motif. Our method resulted in a high capability to extract non-redundant sequential patterns including minimum variable-wildcard regions

    Silicate, Borosilicate, and Borate Bioactive Glass Scaffolds with Controllable Degradation Rate for Bone Tissue Engineering Applications II

    No full text
    In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. the glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. the results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. the results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects
    corecore