50 research outputs found

    Clinical Outcome of Patients with Pelvic and Retroperitoneal Bone and Soft Tissue Sarcoma : A Retrospective Multicenter Study in Japan

    Get PDF
    This study aimed to retrospectively analyze the clinical outcomes of patients with pelvic and retroperitoneal bone and soft tissue sarcoma (BSTS). Overall, 187 patients with BSTS in the pelvis and retroperitoneal region treated at 19 specialized sarcoma centers in Japan were included. The prognostic factors related to overall survival (OS), local control (LC), and progression-free survival (PFS) were evaluated. The 3-year OS and LC rates in the 187 patients were 71.7% and 79.1%, respectively. The 3-year PFS in 166 patients without any distant metastases at the time of primary tumor diagnosis was 48.6%. Osteosarcoma showed significantly worse OS and PFS than other sarcomas of the pelvis and retroperitoneum. In the univariate analyses, larger primary tumor size, soft tissue tumor, distant metastasis at the time of primary tumor diagnosis, P2 location, chemotherapy, and osteosarcoma were poor prognostic factors correlated with OS. Larger primary tumor size, higher age, soft tissue tumor, chemotherapy, and osteosarcoma were poor prognostic factors correlated with PFS in patients without any metastasis at the initial presentation. Larger primary tumor size was the only poor prognostic factor correlation with LC. This study has clarified the epidemiology and prognosis of patients with pelvic and retroperitoneal BSTS in Japan

    Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity

    Get PDF
    Background: It has been shown that heat shock protein 70 (Hsp70) plays a role in influenza A virus replication. Results: A correlation between viral replication/transcription activities and nuclear/cytoplasmic shuttling of Hsp70 was observed. Conclusion: Hsp70 modulates the influenza A virus polymerase activity. Significance: This study, for the first time, suggests that Hsp70 may actually assist in influenza A virus replication. The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments

    Human Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular Protein, EDD.

    Get PDF
    The human herpesvirus-6 (HHV-6) infection induces cell-cycle arrest. In this study, we found that the HHV-6-encoded U14 protein induced cell-cycle arrest at G2/M phase via an association with the cellular protein EDD, a mediator of DNA-damage signal transduction. In the early phase of HHV-6 infection, U14 colocalized with EDD dots in the nucleus, and similar colocalization was also observed in cells transfected with a U14 expression vector. When the carboxyl-terminal region of U14 was deleted, no association of U14 and EDD was observed, and the percentage of cells in G2/M decreased relative to that in cells expressing wild-type U14, indicating that the C-terminal region of U14 and the U14-EDD association are critical for the cell-cycle arrest induced by U14. These results indicate that U14 is a G2/M checkpoint regulator encoded by HHV-6

    Dual Wavelength Imaging Allows Analysis of Membrane Fusion of Influenza Virus inside Cells

    No full text
    Influenza virus hemagglutinin (HA) is a determinant of virus infectivity. Therefore, it is important to determine whether HA of a new influenza virus, which can potentially cause pandemics, is functional against human cells. The novel imaging technique reported here allows rapid analysis of HA function by visualizing viral fusion inside cells. This imaging was designed to detect fusion changing the spectrum of the fluorescence-labeled virus. Using this imaging, we detected the fusion between a virus and a very small endosome that could not be detected previously, indicating that the imaging allows highly sensitive detection of viral fusion
    corecore