50 research outputs found
Dynamics of ions in the selectivity filter of the KcsA channel
The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by under-damped Langevin equation with constant damping and white noise or by Langevin equation with a fractional memory kernel. A comparison of the potential of the mean force derived from unbiased MD simulations with the potential produced by the umbrella sampling method demonstrates significant differences in these potentials. The origin of these differences is an open question that requires further clarifications
Hematopoietic stem cell transplantation with alpha/beta T-lymphocyte depletion and short course of eculizumab in adolescents and young adults with paroxysmal nocturnal hemoglobinuria
The main goal is to optimize hematopoietic stem cell transplantation (HSCT) approach among adolescents and young adults with paroxysmal nocturnal hemoglobinuria (PNH) by means of Graft-versus-host disease (GVHD) and post-transplant complications risk lowering. Materials and methods. We report our experience of HSCT from HLA-matched unrelated donors using TCR alfa/beta and CD19 depletion in 5 pts (1M/4F) with PNH, developed after successful immunosuppressive therapy (IST) of acquired aplastic anemia (AA). Median age of pts at the moment of transplantation was 17,8 years (range 14,5-22,7), median interval from IST to PNH was 4 years (5mo - 6,5 y). In all patients non-severe pancytopenia was present: granulocytes 0,8х109/l (0,8-1,8 х109/l) platelets 106 х109/l (27-143 х109/l) and Hb -78 g/l, median PNH clone size in granulocytes was 94 (range 75-99)%. One pts previously developed sinus thrombosis. Conditioning consisted of thoraco-abdominal irradiation 4-6 Gy, cyclophosphamide 100 mg/kg, fludarabine 150 mg/m2 and anti-thymocyte globulin (ATG) or alemtuzumab. Eculizumab was given from day (-7) till day (+14) (every 7 days, only 4 times). GVHD prophylaxis was tacrolimus ± methotrexate. Results. Infusedgraft characteristics were: CD34+ - 8,1х106/kg, CD3TCRab·150х103/kg, CD3gd+ - 7,3х106/kg, СD19+ - 221х103/kg, NK -6,4х108/kg. Engraftment was achieved in all 5 pts with a median of 15(12-18) и 13(10-18) days for granulocytes and platelets, respectively. Skin acute GVHD grade I developed in only 1 pt, and subsided with short course of glucocorticoids. CMV reactivation occurred in 1 pt; there were no episodes of Epstein-Barr Virus (EBV) o rAdenovirus (AdV) reactivation. Full donor myeloid chimerism was established in all pts by day +30. Immune reconstitution was delayed until 6 months after transplant but no severe infections occurred. All pts are alive 1,7-5,5 years (med 4 years) after HSCT with normal hematopoiesis and immune function, full donor chimerism and no late sequelae. Conclusions. Transplantation of TCRalfa/beta and CD19 depleted hematopoietic cells from matched unrelated donor after immunoablative conditioning and supported with short course of eculizumab is perfectly safe and efficient technology leading to cure in young patients with PNH
Real-Space Mesh Techniques in Density Functional Theory
This review discusses progress in efficient solvers which have as their
foundation a representation in real space, either through finite-difference or
finite-element formulations. The relationship of real-space approaches to
linear-scaling electrostatics and electronic structure methods is first
discussed. Then the basic aspects of real-space representations are presented.
Multigrid techniques for solving the discretized problems are covered; these
numerical schemes allow for highly efficient solution of the grid-based
equations. Applications to problems in electrostatics are discussed, in
particular numerical solutions of Poisson and Poisson-Boltzmann equations.
Next, methods for solving self-consistent eigenvalue problems in real space are
presented; these techniques have been extensively applied to solutions of the
Hartree-Fock and Kohn-Sham equations of electronic structure, and to eigenvalue
problems arising in semiconductor and polymer physics. Finally, real-space
methods have found recent application in computations of optical response and
excited states in time-dependent density functional theory, and these
computational developments are summarized. Multiscale solvers are competitive
with the most efficient available plane-wave techniques in terms of the number
of self-consistency steps required to reach the ground state, and they require
less work in each self-consistency update on a uniform grid. Besides excellent
efficiencies, the decided advantages of the real-space multiscale approach are
1) the near-locality of each function update, 2) the ability to handle global
eigenfunction constraints and potential updates on coarse levels, and 3) the
ability to incorporate adaptive local mesh refinements without loss of optimal
multigrid efficiencies.Comment: 70 pages, 11 figures. To be published in Reviews of Modern Physic
A community effort in SARS-CoV-2 drug discovery.
peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric
A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
A lattice relaxation algorithm is developed to solve the Poisson-Nernst-Planck (PNP) equations for ion transport through arbitrary three-dimensional volumes. Calculations of systems characterized by simple parallel plate and cylindrical pore geometries are presented in order to calibrate the accuracy of the method. A study of ion transport through gramicidin A dimer is carried out within this PNP framework. Good agreement with experimental measurements is obtained. Strengths and weaknesses of the PNP approach are discussed
Two-Dimensional Enzyme Diffusion Demonstrated in Laterally Confined DNA Monolayers
Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon