4 research outputs found

    Enhancing Detection of Remotely-Sensed Floating Objects via Data Augmentation for Maritime SAR

    Get PDF
    A figure of 33,000 search and rescue (SAR) incidents were responded to by the UK’s HM Coastguard in 2020, and over 1322 rescue missions were conducted by SAR helicopters during that year. Combined with Unmanned Aerial Vehicles (UAVs), artificial intelligence, and computer vision, SAR operations can be revolutionized through enabling rescuers to expand ground coverage with improved detection accuracy whilst reducing costs and personal injury risks. However, detecting small objects is one of the significant challenges associated with using computer vision on UAVs. Several approaches have been proposed for improving small object detection, including data augmentation techniques like replication and variation of image sizes, but their suitability for SAR application characteristics remains questionable. To address these issues, this paper evaluates four float detection algorithms against the baseline and augmented datasets to improve float detection for maritime SAR. Results demonstrated that YOLOv8 and YOLOv5 outperformed the others in which F1 scores ranged from 82.9 to 95.3%, with an enhancement range of 0.1–29.2%. These models were both of low complexity and capable of real-time response

    Wall crack multiclass classification : expertise-based dataset construction and learning algorithms performance comparison

    Get PDF
    Wall crack detection is one of the primary tasks in determining the structural integrity of a building for both restorative and preventive attempts. Machine learning techniques, such as deep learning (DL) with computer vision capabilities, have gradually become more prevalent as they can provide expert assessments with an acceptable performance when the crack detection involves a considerable number of structures. Despite such a prospective application, classification on different types of wall cracks is relatively less common, possibly due to the absence of the professional-standard-to-dataset translation. In this work, we utilised a complete pipeline, starting from novel dataset construction, ground truth formulation based on civil engineering standards, and training and testing steps. Our work focused on multi-class classification with regard to the binary classification (i.e., determining only two categories) used in previous studies. We implemented transfer learning based on VGG16 and RestNET50 for feature extraction, combined them with an ANN and kNN for the classifier, and compared their prediction performances. Our results indicate that the developed models can distinguish images that contain wall cracks into three categories of features based on the degree of damage: light, medium, and severe. Furthermore, since greyscale images offer more precise readings and predictions, the use of augmentation in dataset generation is critical. Although ResNet50 is the most stable network in terms of accuracy, it performs better when paired with kNN

    Wall Crack Multiclass Classification: Expertise-Based Dataset Construction and Learning Algorithms Performance Comparison

    No full text
    Wall crack detection is one of the primary tasks in determining the structural integrity of a building for both restorative and preventive attempts. Machine learning techniques, such as deep learning (DL) with computer vision capabilities, have gradually become more prevalent as they can provide expert assessments with an acceptable performance when the crack detection involves a considerable number of structures. Despite such a prospective application, classification on different types of wall cracks is relatively less common, possibly due to the absence of the professional-standard-to-dataset translation. In this work, we utilised a complete pipeline, starting from novel dataset construction, ground truth formulation based on civil engineering standards, and training and testing steps. Our work focused on multi-class classification with regard to the binary classification (i.e., determining only two categories) used in previous studies. We implemented transfer learning based on VGG16 and RestNET50 for feature extraction, combined them with an ANN and kNN for the classifier, and compared their prediction performances. Our results indicate that the developed models can distinguish images that contain wall cracks into three categories of features based on the degree of damage: light, medium, and severe. Furthermore, since greyscale images offer more precise readings and predictions, the use of augmentation in dataset generation is critical. Although ResNet50 is the most stable network in terms of accuracy, it performs better when paired with kNN
    corecore