47 research outputs found

    Circular magnetization processes in CoFeNi electroplated wires

    Full text link
    Circular magnetization processes in electroplated wires is an important topic having straight connection with sensor applications of these soft magnetic materials. In present work the longitudinal and circular hysteresis loops were measured and corresponding magnetization processes were studied in Cu(98)Be(2)/Co(16)Fe(20)Ni(64) wires. The longitudinal hysteresis loops, M(z)-H(z), were measured by inductive technique in a frequency range of 10 to 70 Hz. The circular magnetization curves (M(phi)-H(phi)) were measured for frequencies of 50 and 100 kHz in the H(phi) field up to 1500A/m for different values of the axial external field of 0 to 500 A/m. The longitudinal and circular magnetization curves are comparatively analyzed.García Miquel, ÁH.; García Chocano, VM.; Kurlyandskaya, G. (2009). Circular magnetization processes in CoFeNi electroplated wires. Solid State Phenomena. 152:341-344. doi:10.4028/www.scientific.net/SSP.152-153.341S34134415

    Ferromagnetic resonance in FeCoNi electroplated wires

    Full text link
    [EN] We have investigated the microwave properties (ferromagnetic resonance and ferromagnetic antiresonance) of FeCoNi magnetic tubes created by electroplating on CuBe wire. Important parameters such as the g factor, magnetization, anisotropy field, and damping parameter were obtained from the measurements. One sample, prepared by a method which entails rf-sputtering deposition of an additional FeNi layer, shows a clear ferromagnetic antiresonance. (C) 2003 American Institute of Physics.This work was partially supported by Spanish Secretaria de Estado de Educación y Universidades, Generalitat Valenciana under Project No. CTIDIA/2002/50, Spanish CICyT under Grant No. MAT2000-1047, Award No. Rec-005 of the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF). One of the authors (G.V.K.) thanks Spanish MCyT for her Ramon and Cajal Fellowship. The authors thank Professor V. O. Vas kovskiy for his help.García Miquel, ÁH.; Bhagat, S.; Lofland, S.; Kurlyandskaya, G.; Svalov, A. (2003). Ferromagnetic resonance in FeCoNi electroplated wires. Journal of Applied Physics. 94(3):1868-1872. https://doi.org/10.1063/1.1590407S18681872943Sixtus, K. J., & Tonks, L. (1932). Propagation of Large Barkhausen Discontinuities. II. Physical Review, 42(3), 419-435. doi:10.1103/physrev.42.419Panina, L. V., & Mohri, K. (1994). Magneto‐impedance effect in amorphous wires. Applied Physics Letters, 65(9), 1189-1191. doi:10.1063/1.112104Vázquez, M., & Hernando, A. (1996). A soft magnetic wire for sensor applications. Journal of Physics D: Applied Physics, 29(4), 939-949. doi:10.1088/0022-3727/29/4/001Britel, M. R., Ménard, D., Melo, L. G., Ciureanu, P., Yelon, A., Cochrane, R. W., … Cornut, B. (2000). Magnetoimpedance measurements of ferromagnetic resonance and antiresonance. Applied Physics Letters, 77(17), 2737-2739. doi:10.1063/1.1320042Garcı́a-Miquel, H., Garcı́a, J. ., Garcı́a-Beneytez, J. ., & Vázquez, M. (2001). Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurements. Journal of Magnetism and Magnetic Materials, 231(1), 38-44. doi:10.1016/s0304-8853(01)00040-3Wiggins, J., Srikanth, H., Wang, K.-Y., Spinu, L., & Tang, J. (2000). Magneto-impedance of glass-coated Fe–Ni–Cu microwires. Journal of Applied Physics, 87(9), 4810-4812. doi:10.1063/1.373167Pirota, K. ., Kraus, L., Chiriac, H., & Knobel, M. (2000). Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire. Journal of Magnetism and Magnetic Materials, 221(3), L243-L247. doi:10.1016/s0304-8853(00)00554-0Antonov, A. S., Buznikov, N. A., Iakubov, I. T., Lagarkov, A. N., & Rakhmanov, A. L. (2001). Nonlinear magnetization reversal of Co-based amorphous microwires induced by an ac current. Journal of Physics D: Applied Physics, 34(5), 752-757. doi:10.1088/0022-3727/34/5/314Gay-Balmaz, P., Maccio, C., & Martin, O. J. F. (2002). Microwire arrays with plasmonic response at microwave frequencies. Applied Physics Letters, 81(15), 2896-2898. doi:10.1063/1.1513663Beach, R. S., Smith, N., Platt, C. L., Jeffers, F., & Berkowitz, A. E. (1996). Magneto‐impedance effect in NiFe plated wire. Applied Physics Letters, 68(19), 2753-2755. doi:10.1063/1.115587Kurlyandskaya, G. V., Barandiarán, J. M., Gutiérrez, J., Garcı́a, D., Vázquez, M., & Vas’kovskiy, V. O. (1999). Magnetoimpedance effect in CoFeNi plated wire with ac field annealing destabilized domain structure. Journal of Applied Physics, 85(8), 5438-5440. doi:10.1063/1.369968Garcia, J. ., Asenjo, A., Sinnecker, J. ., & Vazquez, M. (2000). Correlation between GMI effect and domain structure in electrodeposited Co–P tubes. Journal of Magnetism and Magnetic Materials, 215-216, 352-354. doi:10.1016/s0304-8853(00)00156-6Yu, R. H., Landry, G., Li, Y. F., Basu, S., & Xiao, J. Q. (2000). Magneto-impedance effect in soft magnetic tubes. Journal of Applied Physics, 87(9), 4807-4809. doi:10.1063/1.373166Kurlyandskaya, G. ., Garcı́a-Miquel, H., Vázquez, M., Svalov, A. ., & Vas’kovskiy, V. . (2002). Longitudinal magnetic bistability of electroplated wires. Journal of Magnetism and Magnetic Materials, 249(1-2), 34-38. doi:10.1016/s0304-8853(02)00500-0Kurlyandskaya, G. V., Yakabchuk, H., Kisker, E., Bebenin, N. G., Garcı́a-Miquel, H., Vázquez, M., & Vas’kovskiy, V. O. (2001). Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy. Journal of Applied Physics, 90(12), 6280-6286. doi:10.1063/1.1418423Favieres, C., Aroca, C., Sánchez, M. C., & Madurga, V. (2000). Matteucci effect as exhibited by cylindrical CoP amorphous multilayers. Journal of Applied Physics, 87(4), 1889-1898. doi:10.1063/1.372109Lofland, S. E., Garcia-Miquel, H., Vazquez, M., & Bhagat, S. M. (2002). Microwave magnetoabsorption in glass-coated amorphous microwires with radii close to skin depth. Journal of Applied Physics, 92(4), 2058-2063. doi:10.1063/1.149484

    Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons

    Full text link
    [EN] Thin magnetic Fe layers in thickness of 10-240 nm were deposited onto a wheel surface of CoFeMoSiB amorphous ribbons to check our concept of a new type of heterogeneous magnetoimpedance materials formed by two different magnetic parts. The presence of an additional iron layer modifies the magnetoimpedance response of the composite material and leads to increase of the magnetoimpedance ratio from 330 to 345% at a frequency of 3.5 MHz. Two possible mechanisms are discussed for explanation to the observed behaviour. Modification of the surface properties of the amorphous ribbons may have certain potential for technological applications.Cerdeira, M.; Kurlyandskaya, G.; Fernandez, A.; Tejedor, M.; García Miquel, ÁH. (2003). Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons. Chinese Physics Letters. 20(12):2246-2249. doi:10.1088/0256-307X/20/12/045S224622492012Beach, R. S., & Berkowitz, A. E. (1994). Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Applied Physics Letters, 64(26), 3652-3654. doi:10.1063/1.111170Kaneo Mohri, Tsuyoshi Uchiyama, & Panina, L. V. (1997). Recent advances of micro magnetic sensors and sensing application. Sensors and Actuators A: Physical, 59(1-3), 1-8. doi:10.1016/s0924-4247(97)80141-0Vazquez, M., Kurlyandskaya, G. V., Garcia-Beneytez, J. M., Sinnecker, J. P., Barandiaran, J. M., Lukshina, V. A., & Potapov, A. P. (1999). Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy. IEEE Transactions on Magnetics, 35(5), 3358-3360. doi:10.1109/20.800523L.Sánchez, M., M.Prida, V., Hernando, B., V.Kurlyandskaya, G., D.Santos, J., Tejedor, M., & Vázquez, M. (2002). Magnetostriction Dependence of the Relaxation Frequency in the Magnetoimpedance Effect for Amorphous and Nanocrystalline Ribbons. Chinese Physics Letters, 19(12), 1870-1873. doi:10.1088/0256-307x/19/12/339Xiao, S., Liu, Y., Yan, S., Dai, Y., Zhang, L., & Mei, L. (2000). Giant magnetoimpedance and domain structure in FeCuNbSiB films and sandwiched films. Physical Review B, 61(8), 5734-5739. doi:10.1103/physrevb.61.5734Nishibe, Y., Yamadera, H., Ohta, N., Tsukada, K., & Nonomura, Y. (2000). Thin film magnetic field sensor utilizing Magneto Impedance effect. Sensors and Actuators A: Physical, 82(1-3), 155-160. doi:10.1016/s0924-4247(99)00327-1You-Yong, D., Shu-Qin, X., Yi-Hua, L., Lin, Z., Hou-Zheng, W., & Yan-Zhong, Z. (2001). Frequency and Field Dependences of Giant Magneto-Impedance Effect in Sandwiched FeCuCrVSiB Films. Chinese Physics Letters, 18(2), 272-274. doi:10.1088/0256-307x/18/2/340Beach, R. S., Smith, N., Platt, C. L., Jeffers, F., & Berkowitz, A. E. (1996). Magneto‐impedance effect in NiFe plated wire. Applied Physics Letters, 68(19), 2753-2755. doi:10.1063/1.115587Betancourt, I., Valenzuela, R., & Vazquez, M. (2002). Giant magnetoimpedance in Co-based microwires at low frequencies (100 Hz–13 MHz). Journal of Applied Physics, 91(10), 8423. doi:10.1063/1.1447518Iida, S., Ishii, O., & Kambe, S. (1998). Magnetic Sensor Using Second Harmonic Change in Magneto-Impedance Effect. Japanese Journal of Applied Physics, 37(Part 2, No. 7B), L869-L871. doi:10.1143/jjap.37.l869Amalou, F., & Gijs, M. A. M. (2002). Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons. Applied Physics Letters, 81(9), 1654-1656. doi:10.1063/1.1499769Panina, L. ., & Mohri, K. (2000). Magneto-impedance in multilayer films. Sensors and Actuators A: Physical, 81(1-3), 71-77. doi:10.1016/s0924-4247(99)00089-8Kurlyandskaya, G. V., Yakabchuk, H., Kisker, E., Bebenin, N. G., Garcı́a-Miquel, H., Vázquez, M., & Vas’kovskiy, V. O. (2001). Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy. Journal of Applied Physics, 90(12), 6280-6286. doi:10.1063/1.1418423Kurlyandskaya, G. ., Garcı́a-Miquel, H., Vázquez, M., Svalov, A. ., & Vas’kovskiy, V. . (2002). Longitudinal magnetic bistability of electroplated wires. Journal of Magnetism and Magnetic Materials, 249(1-2), 34-38. doi:10.1016/s0304-8853(02)00500-0Tejedor, M., Rubio, H., Elbaile, L., & Iglesias, R. (1993). Surface magnetic anisotropy in amorphous alloys. IEEE Transactions on Magnetics, 29(6), 3466-3468. doi:10.1109/20.281198Tejedor, M., Garcı́a, J. A., Carrizo, J., Elbaile, L., & Santos, J. D. (2002). Effect of residual stresses and surface roughness on coercive force in amorphous alloys. Journal of Applied Physics, 91(10), 8435. doi:10.1063/1.1453947Kurlyandskaya, G. V., Sánchez, M. L., Hernando, B., Prida, V. M., Gorria, P., & Tejedor, M. (2003). Giant-magnetoimpedance-based sensitive element as a model for biosensors. Applied Physics Letters, 82(18), 3053-3055. doi:10.1063/1.1571957Miyajima, H., Sato, K., & Mizoguchi, T. (1976). Simple analysis of torque measurement of magnetic thin films. Journal of Applied Physics, 47(10), 4669-4671. doi:10.1063/1.32239

    Nonlinear magnetoimpedance effect in FeCoNi ferromagnetic tubes

    Full text link
    [EN] The very high (up to 820% of the magnetoimpedance ratio) and sensitive nonlinear giant magnetoimpedance effect has been studied in the FeCoNi magnetic tubes electroplated onto Cu(3%)Be nonmagnetic wire for frequencies from 1-10 MHz. Special annealing was carried out in order to induce the magnetic anisotropy. The high harmonic generation was observed and the harmonics show larger variations with the external magnetic field than the fundamental frequency. The super high sensitivity of the harmonics is promising as regards the increase of the sensitivity of magnetoimpedance sensors.Kurlyandskaya, G.; Yakabchuk, H.; Kisker, E.; Bebenin, N.; García Miquel, ÁH.; Vazquez, M.; Vas'kovskiy, V. (2001). Nonlinear magnetoimpedance effect in FeCoNi ferromagnetic tubes. Chinese Physics Letters. 18(9):1268-1270. doi:10.1088/0256-307X/18/9/337S12681270189Beach, R. S., & Berkowitz, A. E. (1994). Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Applied Physics Letters, 64(26), 3652-3654. doi:10.1063/1.111170Panina, L. V., & Mohri, K. (1994). Magneto‐impedance effect in amorphous wires. Applied Physics Letters, 65(9), 1189-1191. doi:10.1063/1.112104Sommer, R. L., & Chien, C. L. (1996). Giant magneto-impedance effects in Metglas 2705M. Journal of Applied Physics, 79(8), 5139. doi:10.1063/1.361533Kurlyandskaya, G. V., Garcı́a-Beneytez, J. M., Vázquez, M., Sinnecker, J. P., Lukshina, V. A., & Potapov, A. P. (1998). The influence of field- and stress-induced magnetic anisotropy on the magnetoimpedance in nanocrystalline FeCuNbSiB alloys. Journal of Applied Physics, 83(11), 6581-6583. doi:10.1063/1.367925Kurlyandskaya, G. V., Vázquez, M., Muñoz, J. L., García, D., & McCord, J. (1999). Effect of induced magnetic anisotropy and domain structure features on magnetoimpedance in stress annealed Co-rich amorphous ribbons. Journal of Magnetism and Magnetic Materials, 196-197, 259-261. doi:10.1016/s0304-8853(98)00805-1You-Yong, D., Shu-Qin, X., Yi-Hua, L., Lin, Z., Hou-Zheng, W., & Yan-Zhong, Z. (2001). Frequency and Field Dependences of Giant Magneto-Impedance Effect in Sandwiched FeCuCrVSiB Films. Chinese Physics Letters, 18(2), 272-274. doi:10.1088/0256-307x/18/2/340Chen, D.-X., Muñoz, J. L., Hernando, A., & Vázquez, M. (1998). Magnetoimpedance of metallic ferromagnetic wires. Physical Review B, 57(17), 10699-10704. doi:10.1103/physrevb.57.10699Usov, N. A., Antonov, A. S., & Lagar’kov, A. N. (1998). Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 185(2), 159-173. doi:10.1016/s0304-8853(97)01148-7Panina, L. ., & Mohri, K. (2000). Magneto-impedance in multilayer films. Sensors and Actuators A: Physical, 81(1-3), 71-77. doi:10.1016/s0924-4247(99)00089-8Gromov, A., & Korenivski, V. (2000). Electromagnetic analysis of layered magnetic/conductor structures. Journal of Physics D: Applied Physics, 33(7), 773-779. doi:10.1088/0022-3727/33/7/304Beach, R. S., Smith, N., Platt, C. L., Jeffers, F., & Berkowitz, A. E. (1996). Magneto‐impedance effect in NiFe plated wire. Applied Physics Letters, 68(19), 2753-2755. doi:10.1063/1.115587Kurlyandskaya, G. V., Barandiarán, J. M., Muñoz, J. L., Gutiérrez, J., Vázquez, M., Garcia, D., & Vas’kovskiy, V. O. (2000). Frequency dependence of giant magnetoimpedance effect in CuBe/CoFeNi plated wire with different types of magnetic anisotropy. Journal of Applied Physics, 87(9), 4822-4824. doi:10.1063/1.373171Garcia, J. ., Asenjo, A., Sinnecker, J. ., & Vazquez, M. (2000). Correlation between GMI effect and domain structure in electrodeposited Co–P tubes. Journal of Magnetism and Magnetic Materials, 215-216, 352-354. doi:10.1016/s0304-8853(00)00156-6Kurlyandskaya, G. V., Barandiarán, J. M., Gutiérrez, J., Garcı́a, D., Vázquez, M., & Vas’kovskiy, V. O. (1999). Magnetoimpedance effect in CoFeNi plated wire with ac field annealing destabilized domain structure. Journal of Applied Physics, 85(8), 5438-5440. doi:10.1063/1.369968Iida, S., Ishii, O., & Kambe, S. (1998). Magnetic Sensor Using Second Harmonic Change in Magneto-Impedance Effect. Japanese Journal of Applied Physics, 37(Part 2, No. 7B), L869-L871. doi:10.1143/jjap.37.l86

    Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy

    Full text link
    [EN] The extraordinarily high (up to 800% magnetoimpedance ratio) and sensitive magnetoimpedance effect has been found and studied in FeCoNi magnetic tubes electroplated onto CuBe nonmagnetic wire at frequency of about 1 MHz order. Special annealing was done in order to induce magnetic anisotropy. The high harmonic response has been studied, and the harmonics show larger variations with the external magnetic field than the fundamental. This huge sensitivity of the harmonics (up to an order of the tens of thousands %/Oe) is promising in regard to the increase of the sensitivity of giant magnetoimpedance sensors. To explain the experiment results, we calculated the high frequency transverse susceptibility taking into account the magnetic anisotropy of first and second orders. The susceptibility is extremely high at the points of orientational phase transitions in the magnetic layer which gives rise to strong nonlinear effects. (C) 2001 American Institute of Physics.S62806286901

    Propiedades magnetoeléctricas de una memoria magnetorresistiva basada en películas de FeCoNi/TiN/FeCoNi

    Get PDF
    [ES] Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å)/ TiN(50Å)/Fe15Co20Ni65(160Å). El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de ¿m lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.[EN] A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å)/ TiN(50Å)/Fe15Co20Ni65(160Å) three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had ¿m dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.Dr. G.V.Kurlyandskaya acknowledges the financial support of the Basque Government. The work has been supported by the Basque Government under the project N PI97/113 and Spanish CICYT under project MAT-98/965. We thank J. L. Muñoz for helpful discussion.Kurlyandskaya, G.; Barandiarán García, JM.; García Miquel, ÁH.; Vázquez Vilalabeitia, M.; Vaskovskiy, V.; Svalov, A. (2000). High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film. Boletín de la Sociedad Española de Cerámica y Vidrio. 39(4):581-583. https://doi.org/10.3989/cyv.2000.v39.i4.824S58158339

    Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect

    Get PDF
    In this work, the field dependence of the magnetocaloric effect of Gd bulk samples has been enhanced through nanostructuring of the material. Nanostructuring consists in multilayers preparation by alternative rf-sputtering deposition of Gd layers and Ti spacers onto glass substrates. The results obtained for the multilayers were compared to those obtained for the Gd bulk. Assuming a power law for the field dependence of the magnetic entropy change (ΔSM ∝ Hn ), higher field dependences close to the transition in a wider temperature range are obtained for the multilayer material (n = 1.0) with respect to the bulk counterpart (n = 0.78). The effect of a Curie temperature distribution in the multilayer material (due to variations of the layer thickness) has been studied through numerical simulations to explain the observed field dependence of the magnetocaloric effect, obtaining a remarkable agreement between experiments and results.Ministerio de Economía y Competitividad español y EU-FEDER. MAT2013-45165-P y MAT2016-77265-RMinistry of Education and Science of the Russian Federation. Project No. 258

    Ferromagnetic resonance in metallic glasses

    Full text link
    [EN] In the presently work ferromagnetic resonance (FMR) of metallic glasses in microwires form of composition (FexCo1-x)72.5 Si12.5 B15 has been measured. The ferromagnetic resonance frequency of amorphous magnetic microwires has been obtained from power absorption measurements in the microwave frequency range. The experimental technique here employed consists on the replacement of the dielectric of a coaxial transmission line by the sample to be measured. From the evolution of the resonance frequency with a dc applied magnetic field, the anisotropy field of the microwires has been deduced, and successfully compared to that obtained from quasi-static hysteresis loops.[ES] En el presente trabajo se ha medido la frecuencia de resonancia ferromagnética (FMR) de vidrios metálicos en forma de microhilos de composición (FexCo1-x)72.5 Si12.5 B15. Estos microhilos constan de un núcleo magnético de unas 5µm de diámetro y una cobertura de vidrio, siendo el diámetro total de entre 10 y 15 µm según la muestra. La técnica experimental empleada consiste en la sustitución del dieléctrico de una línea de transmisión coaxial por los microhilos a medir, y en la medida de la absorción de potencia a frecuencias de microondas. Para cada muestra se ha ido variando la intensidad de un campo externo de magnetización, provocando la variación de la frecuencia de resonancia. Con estas medidas se ha conseguido establecer la relación entre campo de magnetización y frecuencia de resonancia, y mediante el análisis de los datos obtenidos y contrastados con el modelo teórico propuesto se ha obtenido información del campo de anisotropía de los microhilos. Finalmente, el campo de anisotropía calculado se ha contrastado con el obtenido mediante la medida del ciclo de histéresis quasi-estático.S36737039

    Low field Microwave absoption and magnetization process in CoFeNi electroplated wires

    Full text link
    [EN] Ferromagnetic resonance (FMR), Ferromagnetic antirresonance (FMAR) and low field magnetaimpedance (MI) are the characteristic features of high frequency losses in applied fields. While some results on FMR and FMAR in CoFeNi electroplated wires were reported earlier, here we present microwave absorption in CuBe wires electroplated by 1 mu m FeCoNi magnetic layer at very low fields. These data are comparatively analysed together with longitudinal hysteresis loops in order to reveal the correlation between power absorption and magnetization processes. Microwave studies are made by using the cavity perturbation method at 9.65 GHz for a DC field parallel to the sample axis, and with microwave magnetic field h(rf) parallel or perpendicular to the wire axis. Two peaks have been observed in all samples, one is due to FMR, and the other is, at very low fields, related to MI. The MI peaks represent minima in power absorption. By comparing with the hysteresis loop we remark the close correspondence between the MI phenomena in the axial mode and the concomitant magnetization process.Galina Kurlyandskaya thanks Spanish MEC and Basque Country University UPV-EHU for her “Ramón y Cajal” Fellowship and FMR Group of Physics Department for special support during her Honorary invitation stay at the University of Maryland. We thank Prof. S.M. Bhagat and Prof. S.E. Lofland for many helpful discussions, the dedication of time and introduction into FMR field.García Miquel, ÁH.; Kurlyandskaya, G. (2008). Low field Microwave absoption and magnetization process in CoFeNi electroplated wires. Chinese Physics B. 17(4):1430-1435. doi:10.1088/1674-1056/17/4/047S1430143517
    corecore