11 research outputs found

    Inorganic synthesis-structure maps in zeolites with machine learning and crystallographic distances

    Full text link
    Zeolites are inorganic materials known for their diversity of applications, synthesis conditions, and resulting polymorphs. Although their synthesis is controlled both by inorganic and organic synthesis conditions, computational studies of zeolite synthesis have focused mostly on organic template design. In this work, we use a strong distance metric between crystal structures and machine learning (ML) to create inorganic synthesis maps in zeolites. Starting with 253 known zeolites, we show how the continuous distances between frameworks reproduce inorganic synthesis conditions from the literature without using labels such as building units. An unsupervised learning analysis shows that neighboring zeolites according to our metric often share similar inorganic synthesis conditions, even in template-based routes. In combination with ML classifiers, we find synthesis-structure relationships for 14 common inorganic conditions in zeolites, namely Al, B, Be, Ca, Co, F, Ga, Ge, K, Mg, Na, P, Si, and Zn. By explaining the model predictions, we demonstrate how (dis)similarities towards known structures can be used as features for the synthesis space. Finally, we show how these methods can be used to predict inorganic synthesis conditions for unrealized frameworks in hypothetical databases and interpret the outcomes by extracting local structural patterns from zeolites. In combination with template design, this work can accelerate the exploration of the space of synthesis conditions for zeolites

    Inorganic synthesis-structure maps in zeolites with machine learning and crystallographic distances

    Get PDF
    Zeolites are inorganic materials known for their diversity of applications, synthesis conditions, and resulting polymorphs. Although their synthesis is controlled both by inorganic and organic synthesis conditions, computational studies of zeolite synthesis have focused mostly on the design of organic structure-directing agents (OSDAs). In this work, we combine distances between crystal structures and machine learning (ML) to create inorganic synthesis maps in zeolites. Starting with 253 known zeolites, we show how the continuous distances between frameworks reproduce inorganic synthesis conditions from the literature without using labels such as building units. An unsupervised learning analysis shows that neighboring zeolites according to two different representations often share similar inorganic synthesis conditions, even in OSDA-based routes. In combination with ML classifiers, we find synthesis-structure relationships for 14 common inorganic conditions in zeolites, namely Al, B, Be, Ca, Co, F, Ga, Ge, K, Mg, Na, P, Si, and Zn. By explaining the model predictions, we demonstrate how (dis)similarities towards known structures can be used as features for the synthesis space, thus quantifying the intuition that similar structures often share inorganic synthesis routes. Finally, we show how these methods can be used to predict inorganic synthesis conditions for unrealized frameworks in hypothetical databases and interpret the outcomes by extracting local structural patterns from zeolites. In combination with OSDA design, this work can accelerate the exploration of the space of synthesis conditions for zeolites

    One class classification as a practical approach for accelerating π–π co-crystal discovery

    Get PDF
    Machine learning using one class classification on a database of existing co-crystals enables the identification of co-formers which are likely to form stable co-crystals, resulting in the synthesis of two co-crystals of polyaromatic hydrocarbons.</p

    The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

    Get PDF
    Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.Fil: Rutz, Jonathan J.. National Ocean And Atmospheric Administration; Estados UnidosFil: Shields, Christine A.. National Center for Atmospheric Research; Estados UnidosFil: Lora, Juan M.. University of Yale; Estados UnidosFil: Payne, Ashley E.. University of Michigan; Estados UnidosFil: Guan, Bin. California Institute of Technology; Estados UnidosFil: Ullrich, Paul. University of California at Davis; Estados UnidosFil: O'Brien, Travis. Lawrence Berkeley National Laboratory; Estados UnidosFil: Leung, Ruby. Pacific Northwest National Laboratory; Estados UnidosFil: Ralph, F. Martin. Center For Western Weather And Water Extremes; Estados UnidosFil: Wehner, Michael. Lawrence Berkeley National Laboratory; Estados UnidosFil: Brands, Swen. Meteogalicia; EspañaFil: Collow, Allison. Universities Space Research Association; Estados UnidosFil: Goldenson, Naomi. University of California at Los Angeles; Estados UnidosFil: Gorodetskaya, Irina. Universidade de Aveiro; PortugalFil: Griffith, Helen. University of Reading; Reino UnidoFil: Kashinath, Karthik. Lawrence Bekeley National Laboratory; Estados UnidosFil: Kawzenuk, Brian. Center For Western Weather And Water Extremes; Reino UnidoFil: Krishnan, Harinarayan. Lawrence Berkeley National Laboratory; Estados UnidosFil: Kurlin, Vitaliy. University of Liverpool; Reino UnidoFil: Lavers, David. European Centre For Medium-range Weather Forecasts; Estados UnidosFil: Magnusdottir, Gudrun. University of California at Irvine; Estados UnidosFil: Mahoney, Kelly. Universidad de Lisboa; PortugalFil: Mc Clenny, Elizabeth. University of California at Davis; Estados UnidosFil: Muszynski, Grzegorz. University of Liverpool; Reino Unido. Lawrence Bekeley National Laboratory; Estados UnidosFil: Nguyen, Phu Dinh. University of California at Irvine; Estados UnidosFil: Prabhat, Mr.. Lawrence Bekeley National Laboratory; Estados UnidosFil: Qian, Yun. Pacific Northwest National Laboratory; Estados UnidosFil: Ramos, Alexandre M.. Universidade Nova de Lisboa; PortugalFil: Sarangi, Chandan. Pacific Northwest National Laboratory; Estados UnidosFil: Viale, Maximiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    Molecular set transformer: attending to the co-crystals in the Cambridge structural database

    No full text
    Molecular set transformer is a deep learning architecture for scoring molecular pairs found in co-crystals, whilst tackling the class imbalance problem observed on datasets that include only successful synthetic attempts.</jats:p

    Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal

    No full text
    Mesoporous molecular crystals have potential applications in separation and catalysis, but they are rare and hard to design because many weak interactions compete during crystallization, and most molecules have an energetic preference for close packing. Here, we combine crystal structure prediction (CSP) with structural invariants to continuously qualify the similarity between predicted crystal structures for related molecules. This allows isomorphous substitution strategies, which can be unreliable for molecular crystals, to be augmented by a priori prediction, thus leveraging the power of both approaches. We used this combined approach to discover a rare example of a low-density (0.54 g cm -3) mesoporous hydrogen-bonded framework (HOF), 3D-CageHOF-1. This structure comprises an organic cage (Cage-3-NH 2) that was predicted to form kinetically trapped, low-density polymorphs via CSP. Pointwise distance distribution structural invariants revealed five predicted forms of Cage-3-NH 2that are analogous to experimentally realized porous crystals of a chemically different but geometrically similar molecule, T2. More broadly, this approach overcomes the difficulties in comparing predicted molecular crystals with varying lattice parameters, thus allowing for the systematic comparison of energy-structure landscapes for chemically dissimilar molecules. </p

    A database of experimentally measured lithium solid electrolyte conductivities evaluated with machine learning

    No full text
    Abstract The application of machine learning models to predict material properties is determined by the availability of high-quality data. We present an expert-curated dataset of lithium ion conductors and associated lithium ion conductivities measured by a.c. impedance spectroscopy. This dataset has 820 entries collected from 214 sources; entries contain a chemical composition, an expert-assigned structural label, and ionic conductivity at a specific temperature (from 5 to 873 °C). There are 403 unique chemical compositions with an associated ionic conductivity near room temperature (15–35 °C). The materials contained in this dataset are placed in the context of compounds reported in the Inorganic Crystal Structure Database with unsupervised machine learning and the Element Movers Distance. This dataset is used to train a CrabNet-based classifier to estimate whether a chemical composition has high or low ionic conductivity. This classifier is a practical tool to aid experimentalists in prioritizing candidates for further investigation as lithium ion conductors
    corecore