1,189 research outputs found
Ground state spin and Coulomb blockade peak motion in chaotic quantum dots
We investigate experimentally and theoretically the behavior of Coulomb
blockade (CB) peaks in a magnetic field that couples principally to the
ground-state spin (rather than the orbital moment) of a chaotic quantum dot. In
the first part, we discuss numerically observed features in the magnetic field
dependence of CB peak and spacings that unambiguously identify changes in spin
S of each ground state for successive numbers of electrons on the dot, N. We
next evaluate the probability that the ground state of the dot has a particular
spin S, as a function of the exchange strength, J, and external magnetic field,
B. In the second part, we describe recent experiments on gate-defined GaAs
quantum dots in which Coulomb peak motion and spacing are measured as a
function of in-plane magnetic field, allowing changes in spin between N and N+1
electron ground states to be inferred.Comment: To appear in Proceedings of the Nobel Symposium 2000 (Physica
Scripta
Finite Size Corrections for the Pairing Hamiltonian
We study the effects of superconducting pairing in small metallic grains. We
show that in the limit of large Thouless conductance one can explicitly
determine the low energy spectrum of the problem as an expansion in the inverse
number of electrons on the grain. The expansion is based on the formal exact
solution of the Richardson model. We use this expansion to calculate finite
size corrections to the ground state energy, Matveev-Larkin parameter, and
excitation energies.Comment: 22 pages, 1 figur
Role of a parallel magnetic field in two dimensional disordered clusters containing a few correlated electrons
An ensemble of 2d disordered clusters with a few electrons is studied as a
function of the Coulomb energy to kinetic energy ratio r_s. Between the Fermi
system (small r_s) and the Wigner molecule (large r_s), an interaction induced
delocalization of the ground state takes place which is suppressed when the
spins are aligned by a parallel magnetic field. Our results confirm the
existence of an intermediate regime where the Wigner antiferromagnetism
defavors the Stoner ferromagnetism and where the enhancement of the Lande g
factor observed in dilute electron systems is reproduced.Comment: 4 pages, 3 figure
Nonequilibrium theory of Coulomb blockade in open quantum dots
We develop a non-equilibrium theory to describe weak Coulomb blockade effects
in open quantum dots. Working within the bosonized description of electrons in
the point contacts, we expose deficiencies in earlier applications of this
method, and address them using a 1/N expansion in the inverse number of
channels. At leading order this yields the self-consistent potential for the
charging interaction. Coulomb blockade effects arise as quantum corrections to
transport at the next order. Our approach unifies the phase functional and
bosonization approaches to the problem, as well as providing a simple picture
for the conductance corrections in terms of renormalization of the dot's
elastic scattering matrix, which is obtained also by elementary perturbation
theory. For the case of ideal contacts, a symmetry argument immediately allows
us to conclude that interactions give no signature in the averaged conductance.
Non-equilibrium applications to the pumped current in a quantum pump are worked
out in detail.Comment: Published versio
Interactions and Disorder in Quantum Dots: Instabilities and Phase Transitions
Using a fermionic renormalization group approach we analyse a model where the
electrons diffusing on a quantum dot interact via Fermi-liquid interactions.
Describing the single-particle states by Random Matrix Theory, we find that
interactions can induce phase transitions (or crossovers for finite systems) to
regimes where fluctuations and collective effects dominate at low energies.
Implications for experiments and numerical work on quantum dots are discussed.Comment: 4 pages, 1 figure; version to appear in Phys Rev Letter
Quantum dots with two electrons: Singlet-triplet transitions
The magnetic character of the ground-state of two electrons on a double
quantum dot, connected in series to left and right single-channel leads, is
considered. By solving exactly for the spectrum of the two interacting
electrons, it is found that the coupling to the continuum of propagating states
on the leads, in conjunction with the electron-electron interactions, may
result in a delocalization of the bound state of the two electrons. This, in
turn, reduces significantly the range of the Coulomb interaction parameters
over which singlet-triplet transitions can be realized. It is also found that
the coupling to the leads favors the singlet ground-state.Comment: 8 pages, submitted to Phys. Rev.
Pre-hospital emergency nurse specialist's experiences in caring for patients with non-specific chief complaints in the ambulance - A qualitative interview study
Background: Pre-hospital emergency nurse (PEN) specialists are faced with patients presenting with non-specific chief complaints (NSC) to the emergency medical service (EMS) on a daily basis. These patients are often elderly and one in three has a serious condition and their acuity is not recognized. Objective: The aim of the current study was to explore PEN specialists' experiences in caring for patients presenting with non-specific chief complaints. Design: A qualitative study design with eleven individual interviews of PENs, between 2018 and 2020. Qualitative content analysis was used. Results: The analyses generated three categories including subcategories. The categories were "Unexplained suffering". "Systematic approach and experience enhances medical safety". "Organizational processes can be optimized". The relation between the categories compiled as 'In-depth systematic assessment is perceived to reduce suffering and increases patient safety. Conclusion: The PENs experiences in caring for patients presenting with non-specific chief complaints show that an in-depth systematic assessment may lead to a meaningful caring encounter which enables the identification of the cause of the chief complaint. Experience and a systematic approach were considered as essential to enhance medical safety. This could be strengthened through feedback on the nurse's care provided by care managers and employers. To optimize organizational processes, the development of the opportunity to convey the patient to different levels of care can be an important component.Peer reviewe
Do published guidelines for evaluation of Irritable Bowel Syndrome reflect practice?
BACKGROUND: The only US guidelines listed in the National Guideline Warehouse for the diagnosis of Irritable Bowel Syndrome (IBS) are the expert opinion guidelines published by The American Gastroenterology Association. Although the listed target audience of these guidelines includes family physicians and general internists, the care recommended in the guidelines has not been compared to actual primary care practice. This study was designed to compare expert opinion guidelines with the actual primary care provided and to assess outcomes in the 3 years following the IBS diagnosis. METHODS: This is a retrospective medical record review study using a random sample of incident IBS cases from all Olmsted County, Minnesota providers diagnosed between January 1, 1993 and December 31, 1995. Data was collected on all care and testing provided to the subjects as well as 3-year outcomes related to the IBS diagnosis. RESULTS: Of the 149 IBS patients, 99 were women and the mean age was 47.6 years. No patient had all of the diagnostic tests recommended in the guidelines. 42% had the basic blood tests of CBC and a chemistry panel. Sedimentation rate (2%) and serum thyroxine level (3%) were uncommon. Colon imaging studies were done in 41% including 74% of those over the age of 50. In the 3 years following the diagnosis, only one person had a change in diagnosis and no diagnoses of gastro-intestinal malignancies were made in the cohort. CONCLUSIONS: Primary care practice based diagnostic evaluations for IBS differ significantly from the specialty expert opinion-based guidelines. Implementation of the specialty guidelines in primary care practice would increase utilization with apparent limited improvement in diagnostic outcomes
Discrete charging of metallic grains: Statistics of addition spectra
We analyze the statistics of electrostatic energies (and their differences)
for a quantum dot system composed of a finite number of electron islands
(metallic grains) with random capacitance-inductance matrix , for which the
total charge is discrete, (where is the charge of an electron and
is an integer). The analysis is based on a generalized charging model,
where the electrons are distributed among the grains such that the
electrostatic energy E(N) is minimal. Its second difference (inverse
compressibility) represents the spacing between
adjacent Coulomb blockade peaks appearing when the conductance of the quantum
dot is plotted against gate voltage. The statistics of this quantity has been
the focus of experimental and theoretical investigations during the last two
decades. We provide an algorithm for calculating the distribution function
corresponding to and show that this function is piecewise
polynomial.Comment: 21 pages, no figures, mathematical nomenclature (except for Abstract
and Introduction
Kondo effect in real quantum dots
Exchange interaction within a quantum dot strongly affects the transport
through it in the Kondo regime. In a striking difference with the results of
the conventional model, where this interaction is neglected, here the
temperature and magnetic field dependence of the conductance may become
non-monotonic: its initial increase follows by a drop when temperature and
magnetic field are lowered
- …