16 research outputs found

    Probabilistic Bounds on Complexity of Networks Computing Binary Classification Tasks

    Get PDF
    Complexity of feedforward networks computing binary classification tasks is investigated. To deal with unmanageably large number of these tasks on domains of even moderate sizes, a probabilistic model characterizing relevance of the classification tasks is introduced. Approximate measures of sparsity of networks computing randomly chosen functions are studied in terms of variational norms tailored to dictionaries of computational units. Probabilistic lower bounds on these norms are derived using the Chernoff-Hoeffding Bound on sums of independent random variables, which need not be identically distributed. Consequences of the probabilistic results on the choice of dictionaries of computational units are discussed

    Mitigating Concept Drift via Rejection

    Get PDF
    Göpfert JP, Hammer B, Wersing H. Mitigating Concept Drift via Rejection. In: Kurkova V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, eds. Artificial Neural Networks and Machine Learning – ICANN 2018. Proceedings, Part I. Lecture Notes in Computer Science. Vol 11139. Cham: Springer; 2018

    Classification by Sparse Neural Networks

    No full text
    The choice of dictionaries of computational units suitable for efficient computation of binary classification tasks is investigated. To deal with exponentially growing sets of tasks with increasingly large domains, a probabilistic model is introduced. The relevance of tasks for a given application area is modeled by a product probability distribution on the set of all binary-valued functions. Approximate measures of network sparsity are studied in terms of variational norms tailored to dictionaries of computational units. Bounds on these norms are proven using the Chernoff\u2013Hoeffding bound on sums of independent random variables that need not be identically distributed. Consequences of the probabilistic results for the choice of dictionaries of computational units are derived. It is shown that when a priori knowledge of a type of classification tasks is limited, then the sparsity may be achieved only at the expense of large sizes of dictionaries

    Can Two Hidden Layers Make a Difference?

    No full text
    corecore