148 research outputs found
Percolative shunting on electrified surface
The surface discharge of electrified dielectrics at high humidity is
considered. The percolative nature of charge transport in electrets is
established. Particular attention is given to the phenomena of adsorption and
nucleation of electrically conducting phase in the cause of percolation cluster
growth on electrified surface. The critical index of the correlation lenght for
percolation cluster is found, and its value is in good agreement with the known
theoretical estimations.Comment: 4 pages with 1 figure, revtex, published in Tech. Phys. Lett. 25
(1999) 877-879 with one additional figur
Fluctuation Conductivity in Unconventional Superconductors near Critical Disorder
The fluctuation conductivity in bulk superconductors with
non s-wave pairing and with nonmagnetic disorder of strength is studied at
low and within the Gaussian approximation. It is shown by assuming a quasi
two-dimensional (2D) electronic state that, only if the gap function
d_\mu({\p}) is, as in a 2D p-wave pairing state, linear in the in-plane
(relative) momentum {\p}_\perp, the in-plane fluctuation conductivity on the
line is weakly divergent in low limit. The present result may be
useful in clarifying the true gap function of spin-triplet
through resistivity measurements.Comment: 8 pages, 1 figure, to be published in J. Phys. Soc. Jpn. 70, No.10
(2001
Low-Temperatures Vortex Dynamics in Twinned Superconductors
We discuss the low-temperature dynamics of magnetic flux lines in samples
with a family of parallel twin planes. A current applied along the twin planes
drives flux motion in the direction transverse to the planes and acts like an
electric field applied to {\it one-dimensional} carriers in disordered
semiconductors. As in flux arrays with columnar pins, there is a regime where
the dynamics is dominated by superkink excitations that correspond to Mott
variable range hopping (VRH) of carriers. In one dimension, however, rare
events, such as large regions void of twin planes, can impede VRH and dominate
transport in samples that are sufficiently long in the direction of flux
motion. In short samples rare regions can be responsible for mesoscopic
effects.Comment: 4 pages, 2 figures email: [email protected]
Thermal effects on atomic friction
We model friction acting on the tip of an atomic force microscope as it is
dragged across a surface at non-zero temperatures. We find that stick-slip
motion occurs and that the average frictional force follows ,
where is the tip velocity. This compares well to recent experimental work
(Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all
microscopic parameters. We calculate the scaled form of the average frictional
force's dependence on both temperature and tip speed as well as the form of the
friction-force distribution function.Comment: Accepted for publication, Physical Review Letter
On the low temperature properties and specific anisotropy of pure anisotropically paired superconductors
Dependences of low temperature behavior and anisotropy of various physical
quantities for pure unconventional superconductors upon a particular form of
momentum direction dependence for the superconducting order parameter (within
the framework of the same symmetry type of superconducting pairing) are
considered. A special attention is drawn to the possibility of different
multiplicities of the nodes of the order parameter under their fixed positions
on the Fermi surface, which are governed by symmetry. The problem of an
unambiguous identification of a type of superconducting pairing on the basis of
corresponding experimental results is discussed. Quasiparticle density of
states at low energy for both homogeneous and mixed states, the low temperature
dependences of the specific heat, penetration depth and thermal conductivity,
the I-V curves of SS and NS tunnel junctions at low voltages are examined. A
specific anisotropy of the boundary conditions for unconventional
superconducting order parameter near for the case of specular reflection
from the boundary is also investigated.Comment: 20 page
Strong localization of electrons in quasi-one-dimensional conductors
We report on the experimental study of electron transport in sub-micron-wide
''wires'' fabricated from Si -doped GaAs. These quasi-one-dimensional
(Q1D) conductors demonstrate the crossover from weak to strong localization
with decreasing the temperature. On the insulating side of the crossover, the
resistance has been measured as a function of temperature, magnetic field, and
applied voltage for different values of the electron concentration, which was
varied by applying the gate voltage. The activation temperature dependence of
the resistance has been observed with the activation energy close to the mean
energy spacing of electron states within the localization domain. The study of
non-linearity of the current-voltage characteristics provides information on
the distance between the critical hops which govern the resistance of Q1D
conductors in the strong localization (SL) regime. We observe the exponentially
strong negative magnetoresistance; this orbital magnetoresistance is due to the
universal magnetic-field dependence of the localization length in Q1D
conductors. The method of measuring of the single-particle density of states
(DoS) in the SL regime has been suggested. Our data indicate that there is a
minimum of DoS at the Fermi level due to the long-range Coulomb interaction.Comment: 12 pages, 11 figures; the final version to appear in Phys. Rev.
Magnetolocalization in disordered quantum wires
The magnetic field dependent localization in a disordered quantum wire is
considered nonperturbatively.
An increase of an averaged localization length with the magnetic field is
found, saturating at twice its value without magnetic field.
The crossover behavior is shown to be governed both in the weak and strong
localization regime by the magnetic diffusion length L_B. This function is
derived analytically in closed form as a function of the ratio of the mean free
path l, the wire thickness W, and the magnetic length l_B for a two-dimensional
wire with specular boundary conditions, as well as for a parabolic wire. The
applicability of the analytical formulas to resistance measurements in the
strong localization regime is discussed. A comparison with recent experimental
results on magnetolocalization is included.Comment: 22 pages, RevTe
Methods of surgery for pelvic organ prolapse in a nationwide cohort (FINPOP 2015)
Introduction The management of pelvic organ prolapse (POP) varies significantly between countries. The objective of this study was to describe the methods used for POP surgery in Finland and to identify the factors that affect clinicians' choice to use either a native tissue repair (NTR) or a mesh repair method. Material and Methods This prospective cohort study included 3535 surgeries covering 83% of all POP operations performed in Finland in 2015. The operative details and patient characteristics, including the Pelvic Floor Distress Inventory (PFDI-20), were compared between three selected surgical methods: NTR, transvaginal mesh (TVM) and abdominal mesh (AM). The predictive factors for the use of mesh augmentation were also studied with logistic regression analysis. Results The most common method was NTR (n = 2855, 81%), followed by TVM (n = 429, 12%) and AM (n = 251, 7%). Approximately 92% of the patients who underwent primary prolapse surgery underwent NTR, and mesh surgery was used mainly for recurrent prolapse. The strongest predictor of mesh surgery was previous POP surgery for the same vaginal compartment (adjusted odds ratio [OR] = 56, 95% confidence interval [CI] = 38-84 for TVM; adjusted OR = 22, 95% CI = 14-34 for AM). Other predictive factors for mesh surgery were previous hysterectomy, healthcare district, severe bulge symptoms and advanced prolapse. TVM was associated with advanced anterior prolapse and older age. AM surgery was associated with advanced apical and/or posterior compartment prolapse. PFDI-20 scores were the highest in the AM group (108 vs 103 in the TVM group and 98 in the NTR group, P = 0.012), which indicates more bothersome symptoms than in the other groups. Conclusions The Finnish practices follow international guidelines that advocate NTR as the principal surgical method for POP. Synthetic mesh augmentation was mainly used in patients with recurrent and advanced prolapse with severe symptoms. The variation in the rates of mesh augmentation for POP surgery in different hospitals implies a lack of sufficient evidence of the most suitable treatment method and indicates a need for national guidelines.Peer reviewe
Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study
<p>Abstract</p> <p>Background</p> <p>Arthroscopy is a highly sensitive method of evaluating high-grade cartilage lesions but the detection of low-grade lesions is often is unreliable. Objective measurements are required. A novel NIRS (near-infrared-spectroscopy) device for detection of low-grade cartilage defects was evaluated in a preliminary clinical study.</p> <p>Methods</p> <p>In 12 patients who had undergone arthroscopy, the cartilage lesions within the medial knee compartment were classified according to the ICRS protocol.</p> <p>With a NIR spectrometer system and an optical probe, similar in design to a hook used for routine arthroscopy, the optical properties of cartilage were measured during arthroscopy.</p> <p>Results</p> <p>The mean ratio of 2 NIR absorption bands of intact cartilage 3.8 (range 2.3 to 8.7).was significantly lower than that of cartilage with grade 1 lesions (12.8, range 4.8 to 19.6) and grade 2 lesions (13.4, range 10.4 to 15.4).</p> <p>No differences were observed between grade 1 and grade 2 lesions.</p> <p>Conclusion</p> <p>NIRS can be used to distinguish between ICRS grade 1 lesions and healthy cartilage during arthroscopic surgeries. The results of this clinical study demonstrate the potential of NIRS to objectify classical arthroscopic grading systems.</p
- …