16 research outputs found

    Construction and Piezoelectric Properties of a Single-Peptide Nanotube Composed of Cyclic β-peptides with Helical Peptides on the Side Chains

    Get PDF
    To develop nanopiezoelectronics, it is necessary to investigate the relationship between the sizes and piezoelectric properties of the material. Peptide nanotubes (PNTs) composed of cyclic β-peptides have been studied as leading candidates for nanopiezoelectric materials. The current drawback of PNTs is aggregation to form a PNT bundle structure due to strong dipole–dipole interactions between PNTs. Here, we report the construction and piezoelectric properties of single PNTs without nonspecific aggregation by side-chain modification of helical peptides. A cyclic tri-β-peptide with a helical peptide was prepared by multiple-step liquid-phase peptide synthesis and assembled into PNTs by the vapor diffusion method. These nanotubes were characterized by polarized light microscopy and Fourier transform infrared (FTIR) spectroscopy. Additionally, atomic force microscopy (AFM) topographic images showed nanotubes with a height of 4 nm, which corresponds to the diameter of a PNT on a gold-coated mica substrate, indicating that a single PNT was prepared successfully. The converted piezoelectric response of a single PNT was determined to be 1.39 ± 0.12 pm/V. This value was consistent with that of a PNT bundle, which reveals that the piezoelectricity of PNTs is induced by deformation of their cyclic skeletons and is independent of the bundled structure. This finding not only demonstrates a new molecular design strategy to construct these smallest piezoelectric biomaterials by controlling the supramolecular hierarchical structures but also provides insights into the correlation between molecular assembly morphology and size-dependent piezoelectric properties

    Papain-Catalyzed, Sequence-Dependent Polymerization Yields Polypeptides Containing Periodic Histidine Residues

    Get PDF
    His-containing polypeptides, including polyHis, are attractive materials due to the unique characteristics of the imidazole ring of the His residue. In particular, His-containing polypeptides with repetitive sequences have a variety of distinctive features based on their periodic structure. In this study, chemoenzymatic polymerization of ethyl ester monomers with sequences His, GlyHis, HisGly, and GlyHisGly with hydrophobic side chains on the imidazole ring was performed using papain as a catalyst. Sequence dependence in chemoenzymatic polymerization was observed for GlyHis- and HisGly-based monomers: GlyHis-based monomers did not undergo polymerization, whereas polymerization of HisGly-based monomers afforded polypeptides with a degree of polymerization from 6 to 38 and from 5 to 31 and a number-average degree of polymerization of 16.4 and 12.4 for poly(HisGly) and poly[His(Bu)Gly], respectively. The difference in polymerizability of these dipeptide monomers was supported by a docking simulation between these monomers and papain, where the ester group of the HisGly-based monomer was closer to the catalytic center of papain than that of the GlyHis-based monomer. Infrared spectroscopy and synchrotron wide-angle X-ray diffraction measurements indicated that poly(HisGly) formed a β-sheet structure whose crystallinity was 41.6%, whereas the other tripeptide-based polypeptides were more amorphous showing 19.6–30.7% of crystallinity. Poly(HisGly) exhibited the highest thermal stability among all of the polypeptides in the thermogravimetric analysis, reflecting the difference in the secondary structures

    Synthetic Mitochondria-Targeting Peptides Incorporating α-Aminoisobutyric Acid with a Stable Amphiphilic Helix Conformation in Plant Cells

    Get PDF
    In the genetic modification of plant cells, the mitochondrion is an important target in addition to the nucleus and plastid. However, gene delivery into the mitochondria of plant cells has yet to be established by conventional methods, such as particle bombardment, because of the small size and high mobility of mitochondria. To develop an efficient mitochondria-targeting signal (MTS) that functions in plant cells, we designed the artificial peptide (LURL)₃ and its analogues, which periodically feature hydrophobic α-aminoisobutyric acid (Aib, U) and cationic arginine (R), considering the consensus motif recognized by the mitochondrial import receptor Tom20. Circular dichroism measurements and molecular dynamics simulation studies revealed that (LURL)₃ had a propensity to form a stable α-helix in 0.1 M phosphate buffer solution containing 1.0 wt % sodium dodecyl sulfate. After internalization into plant cells via particle bombardment, (LURL)₃ revealed highly selective accumulation in the mitochondria, whereas its analogue (LARL)₃ was predominantly located in the vacuoles in addition to mitochondria. The high selectivity of (LURL)₃ can be attributed to the incorporation of Aib, which promotes the hydrophobic interaction between the MTS and Tom20 by increasing the hydrophobicity and helicity of (LURL)₃. The present study provided a prospective mitochondrial targeting system using the simple design of artificial peptides

    A Comprehensive Study of Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease

    Get PDF
    The clinical benefits of repetitive transcranial magnetic stimulation (rTMS) for Parkinson's disease (PD) remain controversial. We performed a comprehensive study to examine whether rTMS is a safe and effective treatment for PD. Twelve PD patients received rTMS once a week. The crossover study design consisted of 4-week sham rTMS followed by 4-week real rTMS. The Unified Parkinson's Disease Rating Scale (UPDRS), Modified Hoehn and Yahr Stage, Schwab and England ADL Scale, Actigraph, Mini-Mental State Examination, Hamilton Depression Scale, Wechsler Adult Intelligence Scale-revised, and cerebral blood flow (CBF) and cerebrospinal fluid (CSF) examinations were used to evaluate the rTMS effects. Under both drug-on and drug-off conditions, the real rTMS improved the UPDRS scores significantly, while the sham rTMS did not. There were no significant changes in the results of the neuropsychological tests, CBF and CSF. rTMS seems to be a safe and effective therapeutic option for PD patients, especially in a wearing-off state
    corecore