135 research outputs found

    On e+e- --> W+W- --> 4f(+gamma) at LEP2

    Full text link
    The results on e+e- --> W+W- --> 4f(+gamma) obtained by different groups are compared with each other. Differences in the results for the total cross section of up to about 0.6% are traced back to different ways of implementing the double-pole approximation.Comment: 11 pages, late

    Characterization of Bombyx mori Nucleopolyhedrovirus orf68 Gene That Encodes a Novel Structural Protein of Budded Virus

    Get PDF
    AbstractAll lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell

    Re-Evaluation of the PBAN Receptor Molecule: Characterization of PBANR Variants Expressed in the Pheromone Glands of Moths

    Get PDF
    Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that is essential for ligand-induced internalization, whereas the H. zea PBANR has a shorter C-terminus that lacks features present in the B. mori PBANR critical for internalization. Multiple PBANRs have been reported to be concurrently expressed in the larval CNS of Heliothis virescens. In the current study, we sought to examine the prevalence of multiple PBANRs in the PGs of three moths and to ascertain their potential functional relevance. Multiple PBANR variants (As, A, B, and C) were cloned from the PGs of all species examined with PBANR-C the most highly expressed. Alternative splicing of the C-terminal coding sequence of the PBAN gene gives rise to the variants, which are distinguishable only by the length and composition of their respective C-terminal tails. Transient expression of fluorescent PBANR chimeras in insect cells revealed that PBANR-B and PBANR-C localized exclusively to the cell surface while PBANR-As and PBANR-A exhibited varying degrees of cytosolic localization. Similarly, only the PBANR-B and PBANR-C variants underwent ligand-induced internalization. Taken together, our results suggest that PBANR-C is the principal receptor molecule involved in PBAN signaling regardless of moth species. The high GC content of the C-terminal coding sequence in the B and C variants, which makes amplification using conventional polymerases difficult, likely accounts for previous ā€œpreferentialā€ amplification of PBANR-A like receptors from other species

    Establishment of Sf9 Transformants Constitutively Expressing PBAN Receptor Variants: Application to Functional Evaluation

    Get PDF
    To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30ā€‰min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca2+ mobilization kinetics at a number of RR-C10PBANR2K concentrations including 10ā€‰Ī¼M. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+

    Helical structures of homo-chiral isotope-labeled Ī±-aminoisobutyric acid peptides

    Get PDF
    The chiral deuterium- and 13C-isotope-labeled Ī±-aminoisobutyric acids CD3-Aib and 13CH3-Aib were enantioselectively synthesized from L-Ala aldimine using simplified Maruoka chiral phase-transfer catalysts. Homo-chiral (S)-CD3-Aib homopeptides, up to decamers, were prepared. A (R)-CD3-Aib polymer and (S)-13CH3-Aib polymer were also prepared. Conformational studies on homopeptides using CD spectra and an X-ray crystallographic analysis revealed that the preferred conformations were 310-helical structures comprising equal amounts of right-handed (P) and left-handed (M) helical-screw structures. The Ī±-carbon chiral centers induced by the D- or 13C-isotope substitution of Aib were incapable of controlling the helical-screw directions of their oligopeptides and short polymers

    Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    Get PDF
    SummaryIn flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization

    Low pH-triggering changes in peptide secondary structures

    Get PDF
    We developed a novel methodology using cyclic Ī±,Ī±-disubstituted Ī±-amino acids (dAAs) with an acetal-side chain to control peptide secondary structures. The introduction of cyclic dAAs into peptides contributed to the stabilization of peptide secondary structures as a helix, while an acidic treatment of peptides resulted in a marked conformational change

    Plasmid DNA delivery using fluorescein-labeled arginine-rich peptides

    Get PDF
    Arginine (Arg)-rich peptides exhibit an effective cell-penetrating ability and deliver membrane-impermeable compounds into cells. In the present study, three types of Arg-rich peptides, R9 containing nine Arg residues, (RRG)3 containing six Arg and three glycine (Gly) residues, and (RRU)3 containing six Arg and three Ī±-aminoisobutyric acid (Aib) residues, were evaluated for their plasmid DNA (pDNA) delivery and cell-penetrating abilities. The transfection efficiency of R9/pDNA complexes was much higher than those of (RRG)3 and (RRU)3/pDNA complexes, and was derived from the enhanced cellular uptake of R9/pDNA complexes. The replacement of three Arg residues with the neutral amino acid Gly and hydrophobic amino acid Aib drastically changed the cell-penetrating ability and physicochemical properties of peptide/pDNA complexes, resulting in markedly reduced transfection efficiency. A comparison of the R9 peptide administration forms between a peptide alone and peptide/pDNA complex revealed that the uptake of R9 peptides was more efficient for the complex than the peptide alone, but occurred through the same internalization mechanism. The results of the present study will contribute to the design of novel Arg-rich cell-penetrating peptides for pDNA delivery

    Identification of mTEC precursor cells

    Get PDF
    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-ĪŗB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-ĪŗB activation triggered by RANK and lymphotoxin-Ī² receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs
    • ā€¦
    corecore