48 research outputs found

    A nonrecursive order N preconditioned conjugate gradient: Range space formulation of MDOF dynamics

    Get PDF
    While excellent progress has been made in deriving algorithms that are efficient for certain combinations of system topologies and concurrent multiprocessing hardware, several issues must be resolved to incorporate transient simulation in the control design process for large space structures. Specifically, strategies must be developed that are applicable to systems with numerous degrees of freedom. In addition, the algorithms must have a growth potential in that they must also be amenable to implementation on forthcoming parallel system architectures. For mechanical system simulation, this fact implies that algorithms are required that induce parallelism on a fine scale, suitable for the emerging class of highly parallel processors; and transient simulation methods must be automatically load balancing for a wider collection of system topologies and hardware configurations. These problems are addressed by employing a combination range space/preconditioned conjugate gradient formulation of multi-degree-of-freedom dynamics. The method described has several advantages. In a sequential computing environment, the method has the features that: by employing regular ordering of the system connectivity graph, an extremely efficient preconditioner can be derived from the 'range space metric', as opposed to the system coefficient matrix; because of the effectiveness of the preconditioner, preliminary studies indicate that the method can achieve performance rates that depend linearly upon the number of substructures, hence the title 'Order N'; and the method is non-assembling. Furthermore, the approach is promising as a potential parallel processing algorithm in that the method exhibits a fine parallel granularity suitable for a wide collection of combinations of physical system topologies/computer architectures; and the method is easily load balanced among processors, and does not rely upon system topology to induce parallelism

    Nonrecursive formulations of multibody dynamics and concurrent multiprocessing

    Get PDF
    Since the late 1980's, research in recursive formulations of multibody dynamics has flourished. Historically, much of this research can be traced to applications of low dimensionality in mechanism and vehicle dynamics. Indeed, there is little doubt that recursive order N methods are the method of choice for this class of systems. This approach has the advantage that a minimal number of coordinates are utilized, parallelism can be induced for certain system topologies, and the method is of order N computational cost for systems of N rigid bodies. Despite the fact that many authors have dismissed redundant coordinate formulations as being of order N(exp 3), and hence less attractive than recursive formulations, we present recent research that demonstrates that at least three distinct classes of redundant, nonrecursive multibody formulations consistently achieve order N computational cost for systems of rigid and/or flexible bodies. These formulations are as follows: (1) the preconditioned range space formulation; (2) penalty methods; and (3) augmented Lagrangian methods for nonlinear multibody dynamics. The first method can be traced to its foundation in equality constrained quadratic optimization, while the last two methods have been studied extensively in the context of coercive variational boundary value problems in computational mechanics. Until recently, however, they have not been investigated in the context of multibody simulation, and present theoretical questions unique to nonlinear dynamics. All of these nonrecursive methods have additional advantages with respect to recursive order N methods: (1) the formalisms retain the highly desirable order N computational cost; (2) the techniques are amenable to concurrent simulation strategies; (3) the approaches do not depend upon system topology to induce concurrency; and (4) the methods can be derived to balance the computational load automatically on concurrent multiprocessors. In addition to the presentation of the fundamental formulations, this paper presents new theoretical results regarding the rate of convergence of order N constraint stabilization schemes associated with the newly introduced class of methods

    Near-Optimal Approximation Rates for Distribution Free Learning with Exponentially, Mixing Observations

    Get PDF
    Abstract-This paper derives the rate of convergence for the distribution free learning problem when the observation process is an exponentially strongly mixing (α-mixing with an exponential rate) Markov chain. If is an exponentially strongly mixing Markov chain with stationary measure ρ, it is shown that the empirical estimate f z that minimizes the discrete quadratic risk satisfies the bound where E z∈Z m (·) is the expectation over the first m-steps of the chain, f ρ is the regressor function in L 2 (ρ X ) associated with ρ, r is related to the abstract smoothness of the regressor, ρ X is the marginal measure associated with ρ, and a is the rate of concentration of the Markov chain

    Robust Optimization-Directed Design

    No full text
    viii.;ill.;275.;15c
    corecore