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Abstract— This paper derives the rate of convergence for
the distribution free learning problem when the observation
process is an exponentially strongly mixing (α-mixing with an
exponential rate) Markov chain. If {zk}∞

k=1 = {(xk,yk)}∞
k=1 ⊂X×

Y ≡ Z is an exponentially strongly mixing Markov chain with
stationary measure ρ , it is shown that the empirical estimate fz
that minimizes the discrete quadratic risk satisfies the bound

E
z∈Zm

(‖ fρ − fz‖L2(ρX ))≤C
(

lna
a

) r
2r+1

where E
z∈Zm

(·) is the expectation over the first m-steps of the

chain, fρ is the regressor function in L2(ρX ) associated with ρ ,
r is related to the abstract smoothness of the regressor, ρX is
the marginal measure associated with ρ , and a is the rate of
concentration of the Markov chain.

I. INTRODUCTION

Learning theory has a rich history, beginning in the 1960’s
with the early study of learning machines and algorithms,
when notions of consistency and convergence were intro-
duced for the first time. A good historical perspective on the
origins of the field can be found in [20], while [9] gives
a comprehensive overview of the specific distribution free
learning problem discussed in this paper. Reference [21]
gives another good overview with an emphasis on the diverse
classes of processes that can be encountered in framing a
problem in statistical learning theory while [5] discusses
recent progress with emphasis on settings in a Reproducing
Kernel Hilbert Space (RKHS).

Much of the early work in statistical learning theory
concerned itself with defining a general framework that could
encompass applications such as commonly arise in pattern
recognition, regression estimation, or density estimation.
Typically, learning theory assumes that we are given a set of
m observations {zk}k=1...m = {(xk,yk)}k=1...m ∈ (X ×Y )m ≡
Zm that obey some underlying functional relationship that
exists between the input data {xk}k=1...m ⊆ X and the output
data {yk}k=1...m ⊆ Y . It is usually the underlying functional
relationship that must be identified or inferred. The founda-
tions of statistical learning theory were developed to make
precise notions such as the consistency, convergence and
complexity of various estimates of the underlying functional
relationship.
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Within the past few years, significant advances have been
made to two different aspects of distribution-free learning:
(1) the development of an abstract approximation theoretic
foundation for independent and identically distributed (IID)
measurement process that enables (near) optimal rates for a
wide class of functions (see, e.g. [4], [1], [7], [11], [12], [13],
[10] ), and (2) the incorporation of dependent observations
in classical learning estimates (see, e.g., [18], [23], [22]
and [17]). In contrast to the first class above, however, the
efforts in [18], [23], [22] and [17] do not derive (near)
optimal approximation rates. The primary contribution of this
paper is the extension of this abstract approximation theoretic
framework to certain mixing dependent processes.

A. Learning Theory: Classical Formulation
For the time being, let us consider only IID measure-

ment processes. Let X ⊂ Rn and Y ⊂ R denote compact
sets that contain the admissible inputs and outputs, respec-
tively, so that we have the observations z = {zk}k=1...m =
{(xk,yk)}k=1...m ⊂ Z = X ×Y . We let ρ denote the measure
on Z that governs the IID measurement process, that is, each
zk for k = 1 . . .m is distributed according to ρ . The common
viewpoint adopted by the first set of papers discussed in the
last section introduces for any f : X →Y the ideal quadratic
error or risk

ε( f ) :=
∫

Z
( f (x)− y)2ρ(dz). (1)

The functional ε(·), the quadratic risk associated with the
function f , is a specific popular choice among more general
cases summarized, for example, in [21], [20] or [9]. We
would like at least in principle to find some minimizer of
ε(·) over all functions in some hypothesis set H . In the
distribution free learning problem, it is assumed that we do
not know the distribution ρ . It follows that trying to seek the
minimum of ε(·) over some collection of functions f ∈H is
not directly amenable to calculation. Instead, learning theory
introduces the empirical risk

ε z( f ) :=
1
m

m

∑
k=1

( f (xk)− yk)2 (2)

for a given sample z∈ Zm. The functional ε z(·) is convenient
since it can be computed given any set of m samples, even
if the distribution ρ is unknown, for any f in the hypothesis
class H . The problem of empirical risk minimization is a
classical procedure from learning theory (see [20]) wherein
we compute an estimate fz ∈H that minimizes the empirical
risk

fz := arg min
f∈H

ε z( f )
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in lie of seeking to minimize the ideal functional in Equation
(1). The strategy of using the empirical risk to provide an
practical estimate fz given m independently and identically
distributed observations z = {(xk,yk)}k=1...m has been studied
extensively. At the very least, it is important to know that
the sequence of functions fz, for m = 1,2,3 . . . is such that
the risk and the empirical risk evaluated on this sequence
converge, in some suitable topology, to the minimum value
of risk over the entire hypothesis space H . One historical
milestone in learning theory has been the selection of a
probabilistic framework to cast this convergence. That is,
it has become standard practice to require that the equalities

lim
m→∞

ε( fz) = lim
m→∞

ε z( fz) = inf
f∈H

ε( f )

hold in probability ρ . Such an estimation procedure is
referred to as consistent in the statistical learning theory lit-
erature. One of the foundations of learning theory establishes
that, under rather general working assumptions, a necessary
and sufficient condition for the consistency of the principle
of empirical risk minimization is that the empirical risk ε z(·)
converges uniformly to the actual risk ε(·) in a probabilistic
sense, (see Theorem 2.1, page 38, [20]), satisfying

lim
m→∞

Prob
z∈Zm

(
sup
f∈H

(ε( f )−ε z( f )) > ε

)
= 0, ∀ ε > 0.

B. An Approximation Theoretic Framework for IID Measure-
ments

Results on rates of convergence of learning algorithms
have been available for some time. See for example Chapter
3 of [20] or Chapters 11, 14, 15 in [9]. The efforts in [4],
[1], [7], [13], [10] extend these earlier results by establishing
a common abstract setting that connects learning theory to
well-known approximation spaces and entropy classes. They
use this framework to show that specific learning problems
achieve (near) optimal approximation rates.

A general decomposition of the error used by these authors
in learning algorithms has been tied fundamentally to the
regressor function fρ . The regressor function fρ is defined
by

fρ(x) :=
∫

Y
yρ(dy|x)

where ρ(·|x) is the conditional probability on Y given x.
It is elementary to show that the regressor function fρ is
the minimizer of the quadratic risk ε( f ) over all functions
f ∈ L2(ρX ), where ρX is the marginal probability measure
on X defined via

ρX (A) := ρ(A×Y )

for all measurable sets A⊂ X . That is, we have

fρ = arg inf
f∈L2(ρX )

ε( f )

and moreover

ε( f ) = ‖ f − fρ‖2
L2(ρX ) +ε( fρ). (3)

The task of minimizing the ideal quadratic risk is conse-
quently equivalent to finding the best approximation of the
regressor fρ in the space L2(ρX ). It is this structural simplic-
ity of the quadratic risk functional that largely motivates its
use in comparison to other error or risk functionals.

Given the data z = {(x1,y1),(x2,y2), . . . ,(xm,ym)} ∈ Zm

corresponding to a specific sequence of observations, an
estimation algorithm is defined to be a mapping from the
data z ∈ Zm to a function fz ∈H ⊂ L2(ρX ),

z 7→ fz

for each m = 1,2, . . .. In view of our observation based on
Equation (3) that minimizing the quadratic risk is equivalent
to approximation of the regressor in L2(ρX ), the fidelity of
an estimation procedure can be measured by ‖ fρ− fz‖L2(ρX ).
Unfortunately, it is too much to hope that this error measure
will be small for every conceivable z∈ Zm and m > 0. Rather,
we will find it advantageous to construct estimators that
perform well only for observations that are statistically sig-
nificant. The overall performance of the estimation algorithm
is often measured by the average error over samples given
by

E
z∈Zm

(
‖ fρ − fz‖L2(ρX )

)
(4)

where the expectation E
z∈Zm

(·) is the m-fold expectation with

respect to the product measure ρ⊗m := ρ⊗ρ⊗·· ·⊗ρ . For
any F : Zm → R, we have

E
z∈Zm

(F) :=
∫

Z

∫

Z
· · ·

∫

Z
F(z1,z2, · · · ,zm)ρ⊗m(dz1,dz2, · · · ,dzm)

Alternatively, some authors ([7], for example) focus instead
on deriving bounds for the distribution function

Prob
z∈Zm

(
z : ‖ fρ − fz‖> η

)

and subsequently integrating the distribution function to
achieve a bound in expectation.

Concrete examples where the error in Equation (4) has
been studied often decompose the error into bias and variance
contributions. Recall that for any practical algorithm, we
have elected to restrict the construction of the estimate fz
so that it lies in the hypothesis set H ⊂ L2(ρX ). Suppose
that there is a closest element fH ∈H to the regressor fρ as
measured in the L2(ρX ) norm. If such a function fH exists,
we can always write

‖ fρ − fz‖L2(ρX ) ≤ ‖ fρ − fH ‖L2(ρX ) +‖ fH − fz‖L2(ρX ) (5)

The first term on the right of the above inequality is de-
terministic, i.e. non-random, and is known as the bias. The
second term on the right defines a random variable

z 7→ ‖ fH − fz‖L2(ρX )

which is known as the variance. Inequality (5) makes it clear
that the selection of the hypothesis set H can be critical to
the design of an accurate estimation procedure.

We seek to derive estimators that work well for whole
classes of measurement processes, or choices of ρ . To be

505



precise about what class of measurement processes are under
consideration for a specific estimator design, we introduce
the set of priors Θ ⊂ L2(ρX ) that is the collection of all
possible regressor functions fρ . In other words, we restrict
attention in our construction of estimates to those processes
that are independent and identically distributed with a distri-
bution ρ such that the regressor fρ ∈Θ⊂ L2(ρX ).

One of the significant contributions of the work in [4]
and its further refinements in [1], [7], [11], [12], [13], [10]
is the systematic study of the role of the set of priors Θ
and the hypothesis set H in inequality (5). In this paper
we are concerned solely with establishing the fact that
some of the foundational theorems described in [4] and [7],
for example, can be extended to some specific classes of
dependent measurement processes.

For any Banach space B the distance between a function
g ∈B and a set A⊂B is defined to be

dB(g,A) := inf
f∈A
‖g− f‖B

while the corresponding distance between two subsets A,B⊂
B is given by

dB(B,A) := sup
g∈B

inf
f∈A
‖g− f‖B = sup

g∈B
dB(g,A)

Bounds on the approximation of either the priors Θ or the
hypotheses H in this paper will sometimes be given by
certain linear n-widths. Classical definitions of various types
of n-widths are given in [16], for example, while more recent
nonlinear n-widths are introducted by Temlyakov in [19].
The Kolmogorov n-width of a centrally symmetric compact
set K ⊆B is given by

dn(K,B) := inf
Ln

dB(K,Ln)

where the infimum is taken over all linear subspaces Ln in
B having dimension at most n. The Kolmogorov n-width is
used in this paper.

In addition to rates that describe the approximation of
the set of priors Θ by the hypotheses H , we will need to
describe the hypothesis sets in terms of minimal coverings.
The covering numbers of the set H appear in estimates
that bound the variance ‖ fH − fz‖L2(ρX ) in a probabilistic
sense. The covering numbers of a set are closely related to its
Kolmogorov entropy and to its entropy numbers. For a subset
K of a metric space M, the covering number N (K,ε,M) of
K is given by the minimal number of closed balls Bε ⊂M
of radius ε in M that cover K,

N (K,ε,M) := min
i>0

{
∃{x j

}i
j=1 such that K ⊂

⋃

j=1...i

Bε(x j)

}

For cases in which the set K is a bounded subset of a
finite dimensional subspace of a fixed Banach space B, the
covering numbers are easy to describe (see e.g. [14] and [3]).

Ultimately, the goal of this paper is to steer us towards
a general framework for describing approximation rates for
distribution-free learning theory when the observations are
generated by certain dependent measurement processes. Two

results that have been derived for IID measurement process
motivate our work. The first was derived in [4] and has served
as the basis for a number of generalizations in [7], [13] and
[1].

Corollary 1 (Corollary 7, pp. 19 [4]): Suppose that fz is
the empirical estimator generated by the independent and
identically distributed measurement process {zi}m

i=1 with dis-
tribution ρ . Let H be a convex, compact subset of C(X), or a
compact subset of C(X) for which fρ ∈H , and assume that
for all f ∈H we have | f (x)− y| ≤ M almost everywhere.
For each ε > 0, we have

Prob
z∈Zm

{∫
( fz− fH )2 ρX (dx)≥ ε

}
≤N

(
H ,

ε
24M

)
e−

mε
288M2

(6)
Corollary 1 has proven to be an important step in analyzing
the balance of error terms in Equation (5) by giving a precise
probabilistic bound on the variance. Equation (5), together
with Corollary 1, imply that we can write

‖ fρ − fz‖L2(ρX ) ≤ ‖ fρ − fH ‖L2(ρX ) +η (7)

for all z that is contained in a set of ”statistically significant”
samples Λ(η), where we define the complement

Λc(η) := {z :
∫

( fz− fρ)2ρX (dx)≥ η}.

According to the Corollary 1 we have

Prob
z∈Zm

(Λc(η))≤N (H ,
η

24M
)e−

mη
288M2 .

The size of the complement Λc(η) is bounded by the
covering number of the hypothesis set, multiplied by an
exponential concentration factor.

The second prototypical result that we study builds on
Corollary 1 above to derive rates of convergence.

Theorem 1 (Theorem 4.1, [7]): Suppose that fz is the em-
pirical estimator generated by the independent and identically
distributed measurement process {zi}m

i=1 with distribution ρ .
Let the regressor function fρ ∈Θ where Θ⊂ BR0(C(X)) and
suppose there is a linear subspace Ln of C(X) of dimension
n such that dist(Θ,Ln)C(X) ≤C1n−r. Given m≥ 2, we take

n :=
( m

ln m

) 1
2r+1 and define H := Hm := BR(C(X))

⋂
Ln

where R := M +C1. Then the least squares estimator fz for
this choice of H satisfies

Prob
z∈Zm

{‖ fρ − fz‖ ≥ η
}≤C

{
e−cmη2 η ≥ ηm

1 η ≤ ηm

where ηm := C(lnm/m)
r

2r+1 and the constants c,C depend
only on C1 and M. In particular,

E
z∈Zm

(‖ fρ − fz‖
)≤C

(
lnm
m

) r
2r+1

where C is also an absolute constant.
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C. Learning Theory with Dependent Measurement Processes

Examples of learning theory literature that seeks to treat
processes that are not independent and identically distributed
are given in Chapter 27 of [9], Chapters 2.5 and 3 of [21],
and in the articles [22],[23], and [18]. The foundational work
in [9] derives some consistency and convergence results for
stationary and ergodic measurement processes.

D. Results in this Paper

This paper shows that both of the fundamental results in
[4], Corollary C* and [7] Theorem 4.1 can be generalized
to dependent processes that are strongly (or α-) mixing at
a exponential rate. It will be clear from the proofs that the
critical step in building the generalization is the replacement
of Bernstein’s Inequality for IID processes that is used in [4]
and [7] to obtain an exponential concentration in measure
inequality. It is this requirement that motivates the selection
of exponentially strongly mixing, dependent processes: There
is a suitable replacement for Bernsten’s Inequation for this
class. It is also worth noting that there are several other ap-
proaches that might also be used to obtain a replacement for
Bernstein’s Inequality. Techniques based on large deviation
principles [6] as well as concentration of measure as deduced
from optimal transport [2], [8] are likely candidates. We
have the following straightforward generalization of Cucker
and Smale’s Theorem C∗ (see [4] page 19) for one class
of dependent processes: those Markov chains that are α-
exponentially mixing.

Theorem 2: Suppose that fz is the empirical estimator
associated with the exponentially α-mixing Markov chain
measurement process {zi}m

i=1 that has the stationary measure
ρ and rate of concentration a := a(m,β ,γ) (See Theorem 4).
Let H be a convex, compact subset of C(X) and assume that
for all f ∈H we have | f (x)− y| ≤ M almost everywhere.
For each ε > 0, we have

Prob
z∈Zm

{∫
( fz− fH )2 ρX (dx)≥ ε

}
≤ cN

(
H ,

ε
24M

)
e−

aε
288M2 .

(8)
The reader should note the striking similarity of this theorem
to Corollary 1. In the exponent in Equation (8), the number
of samples m in Corollary 1 is replaced by the rate of
concentration that is to be defined in Theorem 4.

Similar to Corollary 1, the generalization in Theorem 2 can
be used to derive similar rates for the exponentially strongly
mixing process studied in this paper. We have elected to
derive the generalization of Theorem 4.1 in [7] but analogous
results could be derived from the work in [4]. Again, it is
noteworthy that the number of samples m is replaced by the
concentration factor a(m,β ,γ) in equations (9) and (10), in
comparison to the corresponding expressions in Theorem 4.1
in [7].

Theorem 3: Suppose that fz is the empirical estimator
associated with the exponentially α-mixing Markov chain
measurement process {zi}m

i=1 that has the stationary measure
ρ and rate of concentration a := a(m,β ,γ) (See Theorem 4).
Let the regressor function fρ ∈Θ where Θ⊂ BR0(C(X)) and

suppose there is a linear subspace Ln of C(X) of dimension n
such that dist(Θ,Ln)C(X) ≤C1n−r. Suppose that the number
of samples m is large enough such that a ≥ e where e is

the exponential growth constant. We take n :=
(

a
ln(a)

) 1
2r+1

and define H := Hm := BR(C(X))
⋂

Ln where R := M +C1.
Then the least squares estimator fz for this choice of H
satisfies

Prob
z∈Zm

{ ‖ fρ − fz‖ ≥ η
}≤C

{
e−C∗aη2 η ≥ ηm

1 η ≤ ηm
(9)

where ηm := Ĉ(lna/a)
r

2r+1 and the constants Ĉ,C,C∗ depend
only on C1 and M. In particular,

E
z∈Zm

(‖ fρ − fz‖
)≤ C̃

(
lna
a

) r
2r+1

(10)

where C̃ is also an absolute constant.

II. MEASUREMENT PROCESS

We first define the fundamental probabilistic structures
associated with a mixing processe. Let (Z,F ,ρ) be a prob-
ability space with σ -field F and probability measure ρ . For
any two σ -fields A ,B ⊆F , we define the coefficient

α(A ,B) = {sup |ρ(A
⋂

B)−ρ(A)ρ(B)|} (11)

such that A ∈A ,B ∈B. For −∞ ≤ i, j ≤ ∞, we denote the
σ -field generated by the random variables

{
zi . . .z j

}
by

F j
i = σ ({zk} such that i≤ k ≤ j) (12)

The α-mixing coefficient of the process {zk}k∈Z are defined
as α(n) = supk∈Zα(F k−∞,F ∞

k+n). The random sequence
{zk}k∈Z is said to be α-mixing if the respective mixing
coefficients approach zero as n→ ∞.

In this paper, we consider only a very special class of
α-mixing Markov chains: we consider Markov chains that
are exponentially strongly mixing. These Markov chains are
selected owing to the following theorem due to [15] that will
be used to replace Bernstein’s Theorem for IID processes.

Theorem 4: Suppose that the measurement process
{zi}m

i=1 is an exponentially strongly α-mixing Markov chain
with stationary measure ρ . That is, the α-mixing coefficient
α(n) satisfies

α(n)≤ αe−γnβ
n≥ 1 (13)

for some fixed constants γ > 0 and α > 0. Set a(m,γ,β ) to
be

a(m,γ,β ) =

m

⌈{
8m
γ

}1/(β+1)
⌉−1

 , (14)

where buc (due) denotes the greatest (least) integer less
(greater) than or equal to u Let F : Z → R and let

Eρ(F) :=
∫

Z F(ξ )ρ(dξ ) (15)
V 2

ρ :=
∫

Z |F(ξ )−Eρ(F)|2ρ(dξ ). (16)
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Suppose that |F(z)−Eρ(F)| ≤ M almost everywhere in Z.
For any ε > 0 we have

Prob
z∈Zm

{
1
m

m

∑
i=1

F(zi)−Eρ(F)≥ ε

}
≤

(
1+

4
e2 α

)
e
− a(m,γ,β )ε2

2(V 2ρ + εM
3 ) .

(17)

III. PROOFS

We have the following straightforward generalization of
Cucker and Smale’s Theorem C∗ (see [4] page 19) for one
class of dependent processes: those Markov chains that are
α-exponentially mixing.

Proof: [Proof of Theorem 2] The extension of Corollary
1 to the case of dependent processes that are α-mixing
exponentially fast is straightforward using [15] for dependent
processes as an alternative to using Bernstein’s Inequality for
the IID case. We provide an outline for completeness. The
result follows when we choose the invariant measure of the
Markov chain to define the probability space (Z,F ,ρ) that
underlies all of the σ fields in the definition of the mixing
coefficient in equations (11). The proof of the generalization
is carried out in three steps.

In the first step, given a hypothesis space H , we let fH
be a function minimizing the error ε( f ) defined in Equation
(1) over f ∈H . Then, the error in H for a function f ∈H
is

εH ( f ) := ε( f )−ε( fH ). (18)

Correspondingly, for the empirical error ε z( f ) defined in (2),
the error in H for a function f ∈H is

εH ,z( f ) := ε z( f )−ε z( fH ).

We show that for any specific function f ∈H and constants
ε > 0,υ ∈ (0,1), we have

Prob
z∈Zm

{εH ( f )−εH ,z( f )
εH ( f )+ ε

≥ υ
}
≤ ce−

υ2aε
8M2 . (19)

In the second step we show that the argument (19) of this
estimate for an exponential concentration in measure can be
extended in the vicinity of any f ∈H in the sense that if
‖ f −g‖∞ is “small enough”,

εH ( f )−εH ,z( f )
εH ( f )+ ε

≤ υ , (20)

and then we have

εH (g)−εH ,z(g)
εH (g)+ ε

≤ 3υ , (21)

for any 0 < υ < 1. The third step introduces a suitable finite
cover of the hypothesis set H and sums up over all balls in
the cover using covering numbers for H .
Step(1):

For any process that is α-mixing exponentially fast, Modha
and Masry show in [15] that

Prob
z∈Zm

{
1
m

m

∑
i=1

F(zi)−Eρ(F)≥ ε

}
≤ ce

− aε2

2(V 2ρ +εM∗/3) , (22)

provided that F : Z →R, D(·) = |F(·)−Eρ(F)| ≤M∗ almost
everywhere, and Eρ(F) and V 2

ρ are defined in (15). With the
selection of the probability space (Z,F ,ρ) in [15] associated
in this paper with the stationary measure ρ , it is possible to
follow the approach taken by Cucker and Smale in [4] to
conclude that the random variable z 7→ (l( f ))(z)

l( f ) : Z → Y
(l( f ))(x,y) = ( f (x)− y)2− ( fH (x)− y)2

satisfies l( f )(z)≤M2 almost everywhere in Z. Note that by
the definition of εH , we readily have

εH ( f ) = Eρ(l( f )).

Due to the convexity of H , we can bound the variance
V 2

ρ (l( f )) by Lemma 5 of [4] and show that

V 2
ρ (l( f )) := Eρ [(l( f )−E((l( f ))))2]≤ Eρ((l( f ))2)≤

∫

Z
( f − fH )2(( f − y)2

︸ ︷︷ ︸
≤M2

+2( f − y)( fH − y)︸ ︷︷ ︸
≤2M2

+( fH − y)2
︸ ︷︷ ︸

≤M2

)ρ(dz)

≤ 4M2Eρ [( f − fH )2]≤ 4M2εH ( f )

(23)

Now we define ε∗ = υ(τ +ε), M∗ = M2, and τ = εH ( f ) =
Eρ(l( f )) in equation (22) to obtain

Prob
z∈Zm

{εH ( f )−εH ,z( f )
τ + ε

≥ υ
}
≤ ce

−aυ2(τ+ε)2

2(V 2ρ +M2υ(τ+ε)/3)

Following page 20 in [4], we have

ε
8M2 ≤

(τ + ε)2

2(V 2
ρ +M2υ(τ + ε)/3)

,

and we obtain (19).
Step(2):
We define

Lz( f ) := ε( f )−ε z( f ),

corresponding to the defect function of f as defined in [4].
Suppose that we have ‖ f − g‖∞ ≤ υε

4M and equation (20)
holds. By definition we have

εH (g)−εH ,z(g)
εH (g)+ ε

=
Lz(g)−Lz( f )
εH (g)+ ε

+
Lz( f )−Lz( fH )

εH (g)+ ε
.

(24)

From Proposition 3 of [4], we can bound the first term in
this inequality by noting that

Lz(g)−Lz( f )
εH (g)+ ε

≤ 4M ‖ f −g‖∞
εH (g)+ ε

≤ 4M ‖ f −g‖∞
ε

.

Then, we conclude
Lz(g)−Lz( f )
εH (g)+ ε

≤ 4M
ε

υε
4M

= υ . (25)

The numerator of the second term in (24) can be expanded
as

Lz( f )−Lz( fH ) = εH ( f )−εH ,z( f ). (26)
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By the assumption in (20), we have

εH ( f )−εH ,z( f )≤ υ(εH ( f )+ ε),

Note that, from (18)

εH ( f )−εH (g) = ε( f )−ε(g).

Then following the proof of Proposition 3 of [4], we have

|εH ( f )−εH (g)| ≤ 2M ‖ f −g‖∞ =
1
2

υε < ε.

Thus, the second term in (24) is bounded by 2υ in

Lz( f )−Lz( fH )
εH (g)+ ε

≤ εH ( f )−εH ,z( f )
εH (g)+ ε

≤υ
εH ( f )+ ε
εH (g)+ ε

≤ 2υ .

(27)

Equation (21) follows from (25) together with (27).
Step(3):

Let
{

B j
}N (H , υε

4M )
j=1 be a minimal set of balls of radius υε

4M

that cover H and let
{

f j
}N (H , υε

4M )
j=1 be the centers of these

balls. We know that

sup
f∈H

{εH ( f )−εH ,z( f )
εH ( f )+ ε

}
≥ 3υ , (28)

if and only if

∃ j ≤N s.t. sup
f∈B j

{εH ( f )−εH ,z( f )
εH ( f )+ ε

}
≥ 3υ . (29)

By the monotonicity property of a measure, we have

Prob
z∈Zm

{
sup
f∈H

{εH ( f )−εH ,z( f )
εH ( f )+ ε

}
≥ 3υ

}

≤
N (H , ε

4M )
∑
j=1

Prob
z∈Zm

{
sup
f∈B j

{εH ( f )−εH ,z( f )
εH ( f )+ ε

}
≥ 3υ

}
.

(30)

Since we know that ‖ f − f j‖ ≤ υε
4M for all f j ∈ B j, Step(2)

implies that

sup
f∈B j

{εH ( f )−εH ,z( f )
εH ( f )+ ε

}
≥ 3υ

⇒ εH ( f j)−εH ,z( f j)
εH ( f j)+ ε

≥ υ .

(31)

Therefore, for j = 1,2, . . . ,N
(
H , ε

4M

)
, together with (19)

in Step(1)

Prob
z∈Zm

{
sup
f∈B j

{εH ( f )−εH ,z( f )
εH ( f )+ ε

}
≥ 3υ

}

≤Prob
z∈Zm

{εH ( f j)−εH ,z( f j)
εH ( f j)+ ε

≥ υ
}

≤ce−
υ2aε
8M2 .

(32)

Together with (30), we obtain

Prob
z∈Zm

{
sup
f∈H

{εH ( f )−εH ,z( f )
εH ( f )+ε

}
≥ 3υ

}

≤N
(
H ,

ε
4M

)
ce−

υ2aε
8M2 .

(33)

Following the exact arguments in the proof of Theorem C*
in [4], we have (8).

Proof: [Proof of Theorem 3] Given Theorem 2, the
proof is very much similar to that of theorem 4.1 of [7].
For reasons of limited space, we thus omit it herein.
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