73 research outputs found

    Aging Skin: Nourishing from Out-In. Lessons from Wound Healing

    Get PDF
    Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer. There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an ever aging population

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Electrospun Nanostructured Composite Materials for Hydrogen Storage Applications

    Get PDF
    The urgent realisation of the low carbon economy requires the development of cheap, safe and lightweight hydrogen storage, both for commercialisation of hydrogen fuel cell vehicles, and for the use of hydrogen as a reservoir of energy from intermittent renewable energy sources. The primary motivation of this PhD project was to investigate (co)electrospinning, a cheap and scalable fibre production technique, for nanostructuring potential solid state hydrogen storage materials. Solid state storage of hydrogen is being extensively investigated worldwide. However, many of the candidate materials are still not able to meet the practical requirements for mobile applications. The principal drawbacks are that these materials either have low capacity for hydrogen storage (physisorption systems), even at cryogenic temperatures, or high release temperatures with slow release rates (chemisorption systems). Because kinetic and thermodynamic properties can be improved by nanoscale processing, nanoengineering of selected materials has emerged as one of the most effective ways of overcoming their associated performance barriers. In this thesis I present two successful approaches to nanostructuring using electrospinning: firstly, by encapsulating chemical hydrides in polymeric nanofibres, as demonstrated by the development of co-axial ammonia borane-encapsulated polystyrene (AB-PS) fibres, and secondly, by post-processing of single-phase electrospun PAN fibres, resulting in the synthesis of potassium-intercalated graphitic nanofibres (K-GNFs). The results show that the micro and nano-structure imparted through electrospinning, can have the effect of reducing dehydrogenation temperatures in AB-PS fibres (from 110 to ~85 °C) and improving the (de)hydrogenation rates by an order of magnitude in both composite fibres (from ~50 to <5 mins in K-GNFs and from ~150 minutes to as low as 15 minutes in AB-PS fibres). The details of co-axial electrospinning as a novel approach to nanoengineering chemical hydrogen storage materials and as a way of possibly overcoming issues regarding reversibility, stability and clean hydrogen release from many of these materials is discussed. The solution selection method I have developed for use in the synthesis of co-axial composite fibres can be applied as an efficient solution selection formula for multi-phase electrospinning in general

    Clean energy and the hydrogen economy

    No full text
    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen’s potential across all economic sectors

    Astronomical Objects in the Direction of a Possible Southern EeV Cosmic Ray Source

    No full text
    http://www.uap.co.jp/uap/Publication/SERIES/DATA/00079/#anchor_mokuj
    corecore