374 research outputs found

    High-K Precession modes: Axially symmetric limit of wobbling motion

    Full text link
    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178^{178}W; the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives a new insight to understand the wobbling motion in the triaxial superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the first upload, so it is corrected

    The generalised relativistic Lindhard functions

    Full text link
    We present here analytic expressions for the generalised Lindhard function, also referred to as Fermi Gas polarisation propagator, in a relativistic kinematic framework and in the presence of various resonances and vertices. Particular attention is payed to its real part, since it gives rise to substantial difficulties in the definition of the currents entering the dynamics.Comment: 48 pages, 2 figures, to be published in EPJ

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Effects of the Neutron Spin-Orbit Density on Nuclear Charge Density in Relativistic Models

    Full text link
    The neutron spin-orbit density contributes to the nuclear charge density as a relativistic effect. The contribution is enhanced by the effective mass stemming from the Lorentz-scalar potential in relativistic models. This enhancement explains well the difference between the cross sections of elastic electron scattering off 40^{40}Ca and 48^{48}Ca which was not reproduced in non-relativistic models. The spin-orbit density will be examined in more detail in electron scattering off unstable nuclei which would be available in the future.Comment: 4 pages with 3 eps figures, revte

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    QCD Sum Rules, Scattering Length and the Vector Mesons in Nuclear Medium

    Get PDF
    Critical examination is made on the relation between the mass shift of vector mesons in nuclear medium and the vector-meson - nucleon scattering length. We give detailed comparison between the QCD sum rule approach by two of the present authors (Phys. Rev. {\bf C46} (1992) R34) and the scattering-length approach by Koike (Phys. Rev. {\bf C51} (1995) 1488). It is shown that the latter approach is mortally flawed both technically and conceptually.Comment: 16 pages, latex, 4 figures appended as uu-encoded fil

    Modified Quark-Meson Coupling Model for Nuclear Matter

    Get PDF
    The quark-meson coupling model for nuclear matter, which describes nuclear matter as non-overlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: one invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics.Comment: Part of the text is reordered, revised version to appear in Phys. Rev. C. 19 pages, ReVTeX, 4 figures embedde

    Tensor Coupling and Vector Mesons in Dense Nuclear Matter

    Full text link
    The effects of magnetic interaction between vector mesons and nucleons on the propagation (mass and width) of the ρ\rho-meson in particular moving through very dense nuclear matter is studied and the modifications, qualitative and quantitative, due to the relevant collective modes (zero-sound and plasma frequencies) of the medium discussed. It is shown that the ρ\rho-mesons produced in high-energy nuclear collisions will be longitudinally polarized in the region of sufficiently dense nuclear matter, in the presence of such an interaction.Comment: Plain Latex file. Three figures, not appended, may be obtained on request to [email protected]

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure

    Analysis of exchange terms in a projected ERPA Theory applied to the quasi-elastic (e,e') reaction

    Get PDF
    A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to quasi-elastic (e,e') reactions is presented. The study is performed within the framework of the extended random phase approximation (ERPA), which in conjuction with a projection method permits a separation of various contributions tied to different physical processes. The calculations are performed in nuclear matter up to second order in the residual interaction for which we take a (pi+rho)-model with the addition of the Landau-Migdal g'-parameter. Exchange terms are found to be important only for the RPA-type contributions around the quasielastic peak.Comment: 29 pages, 6 figs (3 in postscript, 3 faxed on request), epsf.st
    corecore