293 research outputs found

    Geography-dependent horizontal gene transfer from vertebrate predators to their prey

    Get PDF
    Horizontal transfer (HT) of genes between multicellular animals, once thought to be extremely rare, is being more commonly detected, but its global geographic trend and transfer mechanism have not been investigated. We discovered a unique HT pattern of Bovine-B (BovB) LINE retrotransposons in vertebrates, with a bizarre transfer direction from predators (snakes) to their prey (frogs). At least 54 instances of BovB HT were detected, which we estimate to have occurred across time between 85 and 1.3 Ma. Using comprehensive transcontinental sampling, our study demonstrates that BovB HT is highly prevalent in one geographical region, Madagascar, suggesting important regional differences in the occurrence of HTs. We discovered parasite vectors that may plausibly transmit BovB and found that the proportion of BovB-positive parasites is also high in Madagascar where BovB thus might be physically transported by parasites to diverse vertebrates, potentially including humans. Remarkably, in two frog lineages, BovB HT occurred after migration from a non-HT area (Africa) to the HT hotspot (Madagascar). These results provide a novel perspective on how the prevalence of parasites influences the occurrence of HT in a region, similar to pathogens and their vectors in some endemic diseases

    Longitudinal MRI follow-up of rheumatoid arthritis in the temporomandibular joint: importance of synovial proliferation as an early-stage sign

    Get PDF
    This article describes longitudinal magnetic resonance imaging (MRI) observations in a patient with rheumatoid arthritis of the temporomandibular joint. The characteristic findings included marked synovial proliferation, which was observed before the onset of severe bone destruction. MRI is considered to provide valuable information for the early detection of rheumatoid arthritis of the temporomandibular joint

    Transcriptome-scale similarities between mouse and human skeletal muscles with normal and myopathic phenotypes

    Get PDF
    BACKGROUND: Mouse and human skeletal muscle transcriptome profiles vary by muscle type, raising the question of which mouse muscle groups have the greatest molecular similarities to human skeletal muscle. METHODS: Orthologous (whole, sub-) transcriptome profiles were compared among four mouse-human transcriptome datasets: (M) six muscle groups obtained from three mouse strains (wildtype, mdx, mdx(5cv)); (H1) biopsied human quadriceps from controls and Duchenne muscular dystrophy patients; (H2) four different control human muscle types obtained at autopsy; and (H3) 12 different control human tissues (ten non-muscle). RESULTS: Of the six mouse muscles examined, mouse soleus bore the greatest molecular similarities to human skeletal muscles, independent of the latters' anatomic location/muscle type, disease state, age and sampling method (autopsy versus biopsy). Significant similarity to any one mouse muscle group was not observed for non-muscle human tissues (dataset H3), indicating this finding to be muscle specific. CONCLUSION: This observation may be partly explained by the higher type I fiber content of soleus relative to the other mouse muscles sampled

    Uncoupling of sexual reproduction from homologous recombination in homozygous Oenothera species

    Get PDF
    Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms—a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity

    β3-adrenergic receptor gene, body mass index, bone mineral density and fracture risk in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES)

    Get PDF
    BACKGROUND: Recent studies have suggested that the Arg allele of β3-adrenergic receptor (ADRB3) gene is associated with body mass index (BMI), which is an important predictor of bone mineral density (BMD) and fracture risk. However, whether the ADRB3 gene polymorphism is associated with fracture risk has not been investigated. The aim of study was to examine the inter-relationships between ADRB3 gene polymorphisms, BMI, BMD and fracture risk in elderly Caucasians. METHODS: Genotypes of the ADRB3 gene were determined in 265 men and 446 women aged 60+ in 1989 at entry into the study, whose BMD were measured by DXA (GE Lunar, WI USA) at baseline. During the follow-up period (between 1989 and 2004), fractures were ascertained by reviewing radiography reports and personal interviews. RESULTS: The allelic frequencies of the Trp and the Arg alleles were 0.925 and 0.075 respectively, and the relative frequencies of genotypes Trp/Trp, Trp/Arg and Arg/Arg 0.857, 0.138 and 0.006 respectively. There was no significant association between BMI and ADRB3 genotypes (p = 0.10 in women and p = 0.68 in men). There was also no significant association between ADRB3 genotypes and lumbar spine or femoral neck BMD in either men and women. Furthermore, there were no significant association between ADRB3 genotypes and fracture risk in both women and men, either before or after adjusting for and, BMD and BMI. CONCLUSION: The present data suggested that in Caucasian population the contribution of ADRB3 genotypes to the prediction of BMI, BMD and fracture risk is limited

    Stearoyl-CoA Desaturase-1 (SCD1) Augments Saturated Fatty Acid-Induced Lipid Accumulation and Inhibits Apoptosis in Cardiac Myocytes

    Get PDF
    Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis
    corecore