17 research outputs found

    Helicobacter pylori genome variability in a framework of familial transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Helicobacter pylori </it>infection is exceptionally prevalent and is considered to be acquired primarily early in life through person-to-person transmission within the family. <it>H. pylori </it>is a genetically diverse bacterial species, which may facilitate adaptation to new hosts and persistence for decades. The present study aimed to explore the genetic diversity of clonal isolates from a mother and her three children in order to shed light on <it>H. pylori </it>transmission and host adaptation.</p> <p>Results</p> <p>Two different <it>H. pylori </it>strains and strain variants were identified in the family members by PCR-based molecular typing and sequencing of five loci. Genome diversity was further assessed for 15 isolates by comparative microarray hybridizations. The microarray consisted of 1,745 oligonucleotides representing the genes of two previously sequenced <it>H. pylori </it>strains. The microarray analysis detected a limited mean number (± standard error) of divergent genes between clonal isolates from the same and different individuals (1 ± 0.4, 0.1%, and 3 ± 0.3, 0.2%, respectively). There was considerable variability between the two different strains in the family members (147 ± 4, 8%) and for all isolates relative to the two sequenced reference strains (314 ± 16, 18%). The diversity between different strains was associated with gene functional classes related to DNA metabolism and the cell envelope.</p> <p>Conclusion</p> <p>The present data from clonal <it>H. pylori </it>isolates of family members do not support that transmission and host adaptation are associated with substantial sequence diversity in the bacterial genome. However, important phenotypic modifications may be determined by additional genetic mechanisms, such as phase-variation. Our findings can aid further exploration of <it>H. pylori </it>genetic diversity and adaptation.</p

    Ontology-Based Meta-Analysis of Global Collections of High-Throughput Public Data

    Get PDF
    The investigation of the interconnections between the molecular and genetic events that govern biological systems is essential if we are to understand the development of disease and design effective novel treatments. Microarray and next-generation sequencing technologies have the potential to provide this information. However, taking full advantage of these approaches requires that biological connections be made across large quantities of highly heterogeneous genomic datasets. Leveraging the increasingly huge quantities of genomic data in the public domain is fast becoming one of the key challenges in the research community today.We have developed a novel data mining framework that enables researchers to use this growing collection of public high-throughput data to investigate any set of genes or proteins. The connectivity between molecular states across thousands of heterogeneous datasets from microarrays and other genomic platforms is determined through a combination of rank-based enrichment statistics, meta-analyses, and biomedical ontologies. We address data quality concerns through dataset replication and meta-analysis and ensure that the majority of the findings are derived using multiple lines of evidence. As an example of our strategy and the utility of this framework, we apply our data mining approach to explore the biology of brown fat within the context of the thousands of publicly available gene expression datasets.Our work presents a practical strategy for organizing, mining, and correlating global collections of large-scale genomic data to explore normal and disease biology. Using a hypothesis-free approach, we demonstrate how a data-driven analysis across very large collections of genomic data can reveal novel discoveries and evidence to support existing hypothesis

    Poisson-Lie group of pseudodifferential symbols

    Full text link
    We introduce a Lie bialgebra structure on the central extension of the Lie algebra of differential operators on the line and the circle (with scalar or matrix coefficients). This defines a Poisson--Lie structure on the dual group of pseudodifferential symbols of an arbitrary real (or complex) order. We show that the usual (second) Benney, KdV (or GL_n--Adler--Gelfand--Dickey) and KP Poisson structures are naturally realized as restrictions of this Poisson structure to submanifolds of this ``universal'' Poisson--Lie group. Moreover, the reduced (=SL_n) versions of these manifolds (W_n-algebras in physical terminology) can be viewed as subspaces of the quotient (or Poisson reduction) of this Poisson--Lie group by the dressing action of the group of functions. Finally, we define an infinite set of functions in involution on the Poisson--Lie group that give the standard families of Hamiltonians when restricted to the submanifolds mentioned above. The Poisson structure and Hamiltonians on the whole group interpolate between the Poisson structures and Hamiltonians of Benney, KP and KdV flows. We also discuss the geometrical meaning of W_\infty as a limit of Poisson algebras W_\epsilon as \epsilon goes to 0.Comment: 64 pages, no figure

    Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro

    Get PDF
    BACKGROUND: Cancer prevention trials using different types of antioxidant supplements have been carried out at several occasions and one of the investigated compounds has been the antioxidant N-acetyl-L-cysteine (NAC). Studies at the cellular level have previously demonstrated that a single supplementation of NAC induces a ten-fold more rapid differentiation in normal primary human keratinocytes as well as a reversion of a colon carcinoma cell line from neoplastic proliferation to apical-basolateral differentiation [1]. The investigated cells showed an early change in the organization of the cytoskeleton, several newly established adherens junctions with E-cadherin/β-catenin complexes and increased focal adhesions, all features characterizing the differentiation process. METHODS: In order to investigate the molecular mechanisms underlying the proliferation arrest and accelerated differentiation induced by NAC treatment of NHEK and Caco-2 cells in vitro, we performed global gene expression analysis of NAC treated cells in a time series (1, 12 and 24 hours post NAC treatment) using the Affymetrix GeneChip™ Human Genome U95Av2 chip, which contains approximately 12,000 previously characterized sequences. The treated samples were compared to the corresponding untreated culture at the same time point. RESULTS: Microarray data analysis revealed an increasing number of differentially expressed transcripts over time upon NAC treatment. The early response (1 hour) was transient, while a constitutive trend was commonly found among genes differentially regulated at later time points (12 and 24 hours). Connections to the induction of differentiation and inhibition of growth were identified for a majority of up- and down-regulated genes. All of the observed transcriptional changes, except for seven genes, were unique to either cell line. Only one gene, ID-1, was mutually regulated at 1 hour post treatment and might represent a common mediator of early NAC action. The detection of several genes that previously have been identified as stimulated or repressed during the differentiation of NHEK and Caco-2 provided validation of results. In addition, real-time kinetic PCR analysis of selected genes also verified the differential regulation as identified by the microarray platform. CONCLUSION: NAC induces a limited and transient early response followed by a more consistent and extensively different expression at later time points in both the normal and cancer cell lines investigated. The responses are largely related to inhibition of proliferation and stimulation of differentiation in both cell types but are almost completely lineage specific. ID-1 is indicated as an early mediator of NAC action

    A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features

    Get PDF
    Measurement of type I interferon (IFN-I) has potential to diagnose and stratify autoimmune diseases, but existing results have been inconsistent. Interferon-stimulated-gene (ISG) based methods may be afected by the modularity of the ISG transcriptome, cell-specifc expression, response to IFN-subtypes and bimodality of expression. We developed and clinically validated a 2-score system (IFN-Score-A and -B) using Factor Analysis of 31 ISGs measured by TaqMan selected from 3-IFN-annotated modules. We evaluated these scores using in-vitro IFN stimulation as well as in sorted cells then clinically validated in a cohort of 328 autoimmune disease patients and healthy controls. ISGs varied in response to IFNsubtypes and both scores varied between cell subsets. IFN-Score-A diferentiated Systemic Lupus Erythematosus (SLE) from both Rheumatoid Arthritis (RA) and Healthy Controls (HC) (both p<0.001), while IFN-Score-B diferentiated SLE and RA from HC (both p<0.001). In SLE, both scores were associated with cutaneous and hematological (all p<0.05) but not musculoskeletal disease activity. Comparing with bimodal (IFN-high/low) classifcation, signifcant diferences in IFN-scores were found between diagnostic groups within the IFN-high group. Our continuous 2-score system is more clinically relevant than a simple bimodal classifcation of IFN status. This system should allow improvement in diagnosis, stratifcation, and therapy in IFN-mediated autoimmunity

    Slow Genetic Divergence of Helicobacter pylori Strains during Long-Term Colonization

    No full text
    The genetic variability of Helicobacter pylori is known to be high compared to that of many other bacterial species. H. pylori is adapted to the human stomach, where it persists for decades, and adaptation to each host results in every individual harboring a distinctive bacterial population. Although clonal variants may exist within such a population, all isolates are generally genetically related and thus derived from a common ancestor. We sought to determine the rate of genetic change of H. pylori over 9 years in two asymptomatic adult patients. Arbitrary primed PCR confirmed the relatedness of individual subclones within a patient. Furthermore, sequencing of 10 loci (∼6,000 bp) in three subclones per time and patient revealed only two base pair changes among the subclones from patient I. All sequences were identical among the patient II subclones. However, PCR amplification of the highly divergent gene amiA revealed great variation in the size of the gene between the subclones within each patient. Thus, both patients harbored a single strain with clonal variants at both times. We also studied genetic changes in culture- and mouse-passaged strains, and under both conditions no genetic divergence was found. These results suggest that previous estimates of the rate of genetic change in H. pylori within an individual might be overestimates

    Using Whole-Exome Sequencing to Identify Genetic Markers for Carboplatin and Gemcitabine-Induced Toxicities.

    No full text
    Abstract Purpose: Chemotherapies are associated with significant interindividual variability in therapeutic effect and adverse drug reactions. In lung cancer, the use of gemcitabine and carboplatin induces grade 3 or 4 myelosuppression in about a quarter of the patients, while an equal fraction of patients is basically unaffected in terms of myelosuppressive side effects. We therefore set out to identify genetic markers for gemcitabine/carboplatin-induced myelosuppression. Experimental Design: We exome sequenced 32 patients that suffered extremely high neutropenia and thrombocytopenia (grade 3 or 4 after first chemotherapy cycle) or were virtually unaffected (grade 0 or 1). The genetic differences/polymorphism between the groups were compared using six different bioinformatics strategies: (i) whole-exome nonsynonymous single-nucleotide variants association analysis, (ii) deviation from Hardy–Weinberg equilibrium, (iii) analysis of genes selected by a priori biologic knowledge, (iv) analysis of genes selected from gene expression meta-analysis of toxicity datasets, (v) Ingenuity Pathway Analysis, and (vi) FunCoup network enrichment analysis. Results: A total of 53 genetic variants that differed among these groups were validated in an additional 291 patients and were correlated to the patients' myelosuppression. In the validation, we identified rs1453542 in OR4D6 (P = 0.0008; OR, 5.2; 95% CI, 1.8–18) as a marker for gemcitabine/carboplatin-induced neutropenia and rs5925720 in DDX53 (P = 0.0015; OR, 0.36; 95% CI, 0.17–0.71) as a marker for thrombocytopenia. Patients homozygous for the minor allele of rs1453542 had a higher risk of neutropenia, and for rs5925720 the minor allele was associated with a lower risk for thrombocytopenia. Conclusions: We have identified two new genetic markers with the potential to predict myelosuppression induced by gemcitabine/carboplatin chemotherapy. Clin Cancer Res; 22(2); 366–73. ©2015 AACR.</jats:p
    corecore