7,480 research outputs found

    Restoration and Design Project for Philadelphia Chinatown

    Get PDF

    Probabilistic Inference for Hybrid Bayesian Networks

    Get PDF

    Rashba Spin Interferometer

    Full text link
    A spin interferometer utilizing the Rashba effect is proposed. The novel design is composed of a one-dimensional (1D) straight wire and a 1D half-ring. By calculating the norm of the superposed wave function, we derive analytical expressions to describe the spin interference spectrum as a function of the Rashba coupling strength. Presented spin interference results are identified to include (i) the quantum-mechanical 4pi rotation effect, (ii) geometric effect, and (iii) Shubnikov-de Haas-like beating effect.Comment: 3 pages, 3 figures, appears in the proceedings of the 10th Joint MMM/Intermag Conferenc

    Quantum World-line Monte Carlo Method with Non-binary Loops and Its Application

    Get PDF
    A quantum world-line Monte Carlo method for high-symmetrical quantum models is proposed. Firstly, based on a representation of a partition function using the Matsubara formula, the principle of quantum world-line Monte Carlo methods is briefly outlined and a new algorithm using non-binary loops is given for quantum models with high symmetry as SU(N). The algorithm is called non-binary loop algorithm because of non-binary loop updatings. Secondary, one example of our numerical studies using the non-binary loop updating is shown. It is the problem of the ground state of two-dimensional SU(N) anti-ferromagnets. Our numerical study confirms that the ground state in the small N <= 4 case is a magnetic ordered Neel state, but the one in the large N >= 5 case has no magnetic order, and it becomes a dimer state.Comment: 14 pages, 5 figures, Invited talk at the 18th Annual Workshop on Recent Developments of Computer Simulation Studies in Condensed Matter Physics, Athens, 7-11 March, 200

    Broken spin-Hall accumulation symmetry by magnetic field and coexisted Rashba and Dresselhaus interactions

    Full text link
    The spin-Hall effect in the two-dimensional electron gas (2DEG) generates symmetric out-of-plane spin Sz accumulation about the current axis in the absence of external magnetic field. Here we employ the real space Landauer-Keldysh formalism [B. K. Nikolic et al., Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 73, 075303 (2006)] by considering a four-terminal setup to investigate the circumstances in which this symmetry is broken. For the absence of Dresselhaus interaction, starting from the applied out-of-plane B corresponding to Zeeman splitting energy 0 - 0.5 times the Rashba hopping energy tR, the breaking process is clearly seen. The influence of the Rashba interaction on the magnetization of the 2DEG is studied herein. For coexisted Rashba tR and Dresselhaus tD spin-orbit couplings in the absence of B, interchanging tR and tD reverses the entire accumulation pattern.Comment: 3 pages, 2 figures, appears in the proceedings of 10th MMM/INTERMAG conferenc

    Discrete Frequency Selection of Frame-Based Stochastic Real-Time Tasks

    Full text link
    Energy-efficient real-time task scheduling has been actively explored in the past decade. Different from the past work, this paper considers schedulability conditions for stochastic real-time tasks. A schedulability condition is first presented for frame-based stochastic real-time tasks, and several algorithms are also examined to check the schedulability of a given strategy. An approach is then proposed based on the schedulability condition to adapt a continuous-speed-based method to a discrete-speed system. The approach is able to stay as close as possible to the continuous-speed-based method, but still guaranteeing the schedulability. It is shown by simulations that the energy saving can be more than 20% for some system configurationsComment: 10 page
    • …
    corecore