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1. Introduction

A Bayesian network (BN) Charniak (1991) Pearl (1988) Jensen (1996) Neapolitan (1990) is
a directed acyclic graph (DAG) consisting of nodes and arrows, in which node represents
random variables, and arrow represents dependence relationship between connected nodes
in the sense of the probabilistic, deterministic, or functional. Each node in BN has a specified
conditional probability distribution (CPD), where all CPDs together parameterize the model.
BNs have been used as powerful probabilistic knowledge models for decision support under
uncertainty over a few decades, with numerous applications such as classification, medical
diagnosis, bioinformatics, speech recognition, etc. One of the most important features BN
has is the factorization of the joint probability space, so that conditional independence can be
exploited to simplify modeling and save computations. However, BN model is only useful
when combined with efficient algorithms for inference.

Over decades after the first Bayesian network (BN) was introduced in early 1980s, a number
of inference algorithms have been reported in the literature. However, for hybrid Bayesian
networks with both discrete and continuous variables, which are usually inevitable in
modeling real-life problems, inference task has many difficulties and open issues. This
chapter focuses on introducing the state-of-the-art hybrid inference methods in the literature.
Particularly, we take scalability as a very important aspect and intend to provide the reader
the opportunities to get the efficent inference methods under different circumstances.

The simplest hybrid Bayesian network is called Conditional Linear Gaussian (CLG) and it is a
hybrid model for which exact inference can be performed by the Junction Tree (JT) algorithm
Lauritzen (1992). However, JT and all of other exact inference algorithms have the complexity
of being, in general, exponential to the size of the largest clique of the strongly triangulated
graph. For a hybird BN model, there surely exists hybrid cliques that including all of discrete
parent nodes for a connected continuous subgraph and at least one continuous node from the
subgraph, which is usually the largest clique. Therefore, in most of real applications, exact
inference is intractable.

For a general hybrid Bayesnet, due to the difficult issues such as the heterogeneity of
variables, arbitrary densities involved, and possibly any functional relationships, with
network topologies that may have discrete variables as parents of continuous nodes, we have
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2 Will-be-set-by-IN-TECH

to rely on approximate inference with tradeoff in accuracy against complexity. To this end,
there are several main categories of approximate algorithms:

1. Generalized Junction Tree algorithm: when the complexity of a network is beyond the
capability of traditional JT, Koller et al. (1999) proposed a general algorithm under the
framework of Junction Tree, but using approximate clique potentials to do the clique tree
propagation. It involves approximate inference algorithms to estimate the densities in each
clique. Further, for hybrid network with the structure such that continuous variable has
discrete children, Shenoy (2006) introduces a way to convert the model into a network
with CLG structure, and then use Gaussian mixtures to approximate clique potentials for
inference under Junction Tree framework. Another interesting method to approximate
densities is to use truncated exponential Cobb & Shenoy (2006).

2. Hybrid loopy belief propagation: also know as message passing, the first belief
propagation algorithm was proposed by Pearl in 1980s Pearl (1988), to provide exact
inference for discrete polytree BN model. When there is any loop in the network,
it becomes loopy belief propagation and provides accurate approximate solutions
empirically for discrete networks Murphy et al. (1999). In hybrid case, Yuan & Druzdzel
(2006) proposed a computationally extensive approach combining nonparametric belief
propagation Sudderth et al. (2003), numerical integration, and density estimation
techniques to pass messages between any types of variables.

3. Monte Carlo: importance sampling methods, such as Likelihood Weighting Fung & Chang
(1989), Shachter & Peot (1999), are model-free algorithms, but usually have difficulty in
dealing with unlikely evidence. The state-of-the-art importance sampling algorithms are
AIS-BN Cheng & Druzdzel (2000) and EPIS-BN Yuan & Druzdzel (2007). Unfortunately,
both work for discrete networks only. For hybrid BN models, any approximate results
obtained by algorithms in the first two categories can be certainly used as the importance
functions for efficient sampling process. Other sampling methods include Markov Chain
Monte Carlo (MCMC) Gilks et al. (1996), Gamerman & Lopes (2006).

4. Variational methods: by formulating probabilistic inference into an optimization problem,
variational methods provide another perspective for approximation solutions (Wainwright
& Jordan (2008)).

We are particularly interested in the message passing framework because of its simplicity
of implementation and good empirical performance, and more importantly, its distributed
nature of inference. Without the computational burden of numerical integration, we proposed
a partitioned message passing algorithm in Sun & Chang (2009), using interface nodes to
separate the original network into sub-networks. Each sub-network contains only one type
of variables, either discrete or continuous. We then conduct message passing separately
within each sub-network. Finally, messages are fused together through interface nodes and
the posterior distributions are computed based on final messages. The advantage of the
partitioned message passing method is that it is easier to accommodate an efficient algorithm
for inference within homogeneous sub-networks. On the other hand, a disadvantage is that
we have to conduct inference conditioning on all the discrete parent nodes (i.e., interface
nodes), for each connected continuous subgraph. Therefore, the algorithm has an exponential
complexity proportional to the product of sizes of discrete parent nodes.

It is more desirable to have an unified message passing framework that allows direct message
propagation between different types of variables for general hybrid Bayesian networks. We
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Probabilistic Inference for Hybrid Bayesian Networks 3

achieve this goal by deriving formulae for exchanging messages under all possible scenarios.
Unscented transformation are used to tackle possible nonlinear functional relationships
between continuous variables Julier (2002), Sun & Chang (2007a). For arbitrary densities,
we proposed to use Gaussian mixture as the approximation before passing messages. The
approach does not require any graph transformation, or any numerial integrations. In the
framework, each node in the networks propagates messages to its neighbors. Messages
are computed locally based on the node types under various circumstances without global
knowledge. To maintain scalability, we also propose to use Gaussian mixture reduction
techniques Kuo-Chu Chang & Smith (2010), Chang & Sun (2010), to limit the number of
Gaussian components, while having the approximation error bounded each time. We term
this new scalable and distributed approach Direct Message Passing for Hybrid Bayesian
Network (DMP-HBN). Further, for general hybrid models with topology such that a discrete
node may have continuous parents, one can always use Shenoy (2006) to convert the model
into a network with CLG structure, then apply DMP-HBN for inference. This algorithm
is able to provide an exact solution for polytree CLGs, and approximate solution by loopy
propagation for general hybrid models.

In the rest of this chapter, we focus on describe the details of DMP-HBN. At the end of
this chatper, we will also briefly discuss an up-to-date method to find the most probable
explanations (MPE) for hybrid Bayesian networks.

2. Direct message passing

This section describes DMP-HBN algorithm in detail. We first briefly review Pearl’s original
message passing algorithm. We then extend it for general hybrid models.

2.1 Pearl’s message passing algorithm

Recall that in a polytree network, any node X d–separates evidence into {e+, e
−}, where e

+

and e
− are evidence from the sub-network “above" X and “below" X respectively. Every node

in the network maintains two values called λ and π. The λ value of X is the likelihood, defined
as:

λ(X) = P(e−X |X) (1)

The π value of X, defined as:
π(X) = P(X| e

+
X ) (2)

is the conditional probability distribution of X given e
+
X . It is easy to see that the belief of a

node X given all evidence is just the normalized product of its λ and π values:

BEL(X) = P(X|e) = P(X|e+X , e
−
X )

=
P(e−X |X, e

+
X )P(X|e+X )P(e+X )

P(e+X , e
−
X )

= αP(e−X |X)P(X|e+X )
= αλ(X)π(X) (3)

where α is a normalizing constant. In message passing, every node sends λ messages to each
of its parents and π messages to each of its children. Based on its received messages, every
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node updates its λ and π values correspondingly. The general message propagation equations
of Pearl’s algorithm are the following Pearl (1988):

π(X) = ∑
T

P(X| T)
m

∏
i=1

πX(Ti) (4)

λ(X) =
n

∏
j=1

λYj
(X) (5)

πYj
(X) = α

⎡

⎣∏
k �=j

λYk
(X)

⎤

⎦ π(X) (6)

λX(Ti) = ∑
X

λ(X) ∑
Tk : k �=i

P(X|T)∏
k �=i

πX(Tk) (7)

where T = (T1, T2, ..., Tn) are the parents of node X; Y = (Y1, Y2, ..., Ym) are children of node
X; λYj

(X) is the λ message node X receives from its child Yj, λX(Ti) is the λ message X sends

to its parent Ti; πX(Ti) is the π message node X receives from its parent Ti, πYj
(X) is the π

message X sends to its child Yj; and α is a normalizing constant.

Equations (4) to (7) are recursive equations, so we need to initialize messages properly to
start the message propagation. Again, Pearl’s algorithm is originally designed for discrete
polytree networks, so these propagation equations are for computing discrete probabilities.
When Pearl’s algorithm is applied to a pure discrete polytree network, the messages
propagated are exact and so are the beliefs of all nodes after receiving all messages. For pure
continuous networks with arbitrary distributions, we proposed a method called Unscented
Message Passing Sun & Chang (2007a) using a similar framework with different message
representations and a new corresponding computation method. However, with both discrete
and continuous variables in the model, passing messages directly between different types of
variables requires additional techniques.

2.2 Direct message passing between discrete and continuous variables

We focus our research in this paper to the type of hybrid Bayesian networks that have the
same network structure as the CLG, named conditional hybrid model (CHM). In a CHM,
a continuous node is not allowed to have any discrete child, while it may have arbitrary
distributions and nonlinear relationships between variables. We believe that it is not difficult
to extend our algorithm to general hybrid models with arbitrary network structure. Therefore
in a CHM, the only case we need to consider when exchanging message between different
types of variables is when a continuous node has discrete parents. Without loss of generality,
suppose that we have a typical hybrid CPD involving a continuous node X with a discrete
parent node D and a continuous parent node U, as shown in 1. Messages sent between these
nodes are: (1) π message from D to X, denoted as πX(D); (2) π message from U to X, denoted
as πX(U); (3) λ message from X to D, denoted as λX(D); and (4) λ message from X to U,
denoted as λX(U). In addition, each node needs to maintain its λ and π values.

Let us look at these messages one by one, and derive their corresponding formula based on
Pearl’s traditional message passing mechanism. First, recall from Equation (6), πX(D) can be
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computed by substitution:

πX(D) = α

[

∏
child �=X

λchild(D)

]

π(D) (8)

where λchild(D) is λ message sent to D from each of its children except X, and π(D) is the
easily computed message sent from the discrete sub-network “above" D. Note that λchild(D)
is always in the form of a discrete vector. After normalizing, πX(D) is a discrete probability
distribution serving as the mixing prior for a Gaussian mixture.

Similarly, but in a different form, πX(U) can be computed as:

πX(U) = α

[

∏
child �=X

λchild(U)

]

π(U) (9)

where λchild(U) are λ messages sent to U from its continuous children other than X. These λ

messages are continuous messages in the form of Gaussian mixtures. π(U) is π value of U,
and its computation depends on the type of parent nodes it has. The generalized computation
of π(X) will be described in the next paragraph. Finally, the resulting πX(U) is a normalized
product of Gaussian mixtures, resulting in another Gaussian mixture with a greater number
of components.

Now for π(X), by applying Equation (4) with integral replacing summation for continuous
variable, we have,

π(X) = ∑
D

∫

U
P(X|D, U)πX(D)πX(U)dU

= ∑
D

[

πX(D)
∫

U
P(X|D, U)πX(U)dU

]

(10)

where πX(D) and πX(U) are π messages sent from D and U respectively. For a given D = d,
P(X|D = d, U) defines a probabilistic functional relationship between X and its continuous
parent U. The integral of P(X|D = d, U)πX(U) over U is equivalent to a functional
transformation of πX(U), which is a continuous message in the form of a Gaussian mixture.
In this functional transformation process, we pass each Gaussian component individually to

UD

X

Fig. 1. A typical node with hybrid CPD — continuous node X has discrete parent D and
continuous parent U.
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form a new Gaussian mixture. Essentially, π(X) is a mixture of continuous distributions
weighted by πX(D). To avoid the potential for growing complexity of the message, it is
possible to approximate the mixture with a single Gaussian density or a Gaussian mixture
with fewer components.

λ(X) is relatively straightforward to compute as it is the product of λ messages from each
of its children, which must be continuous variables due to the network structure restriction.
However, since we represent a continuous message as a Gaussian mixture, the product
of a set of Gaussian mixtures will be another Gaussian mixture with increased number of
components.

Let us now turn to the computation of messages sent from X to its parents D and U. As
shown in Equation (7), λ message sent to its parents is essentially an inverse functional
transformation of the product of the λ value of the node itself and the π messages sent from
all of its other parents via the function defined in the CPD of X. It can be derived as,

λX(D = d) =
∫

X
λ(X)

∫

U
P(X|D = d, U)πX(U)dUdX (11)

where
∫

U P(X|D = d, U)πX(U)dU is a functional transformation of a distribution over U
into a distribution over X. Further, multiplying by λ(X) and integrating over X, results in a
non-negative constant, serving as a likelihood of X given D = d.

Similarly, the λ message sent from X to its continuous parent U can be expressed as:

λX(U) =
∫

X
λ(X)∑

D

P(X|D, U)πX(D)dX

= ∑
D

[

πX(D)
∫

X
λ(X)P(X|D, U)dX

]

(12)

Note that
∫

X λ(X)P(X|D, U)dX is an integral of the product of X’s λ value and its conditional
probability distribution; this integral is over X itself. Therefore it results in a density estimate
of its parent multiplied by a coefficient. This coefficient is very critical in computing mixing
priors with πX(D) when there is more than one component in the mixture distributions.

Equations (8) to (12) form a baseline for computing messages between discrete and continuous
variables. Along with the well-defined formulae for computing messages between the same
types of variables, they together provide an unified message passing framework for hybrid
Bayesian network models. When the network is a polytree, messages propagated between
nodes are exact and so the beliefs. When there are loops in the network, DMP-BN still works
in the same way as so-called loopy propagation but provides approximate solution.

To illustrate the algorithm, next we describe in detail the computing process of message
passing with a concrete 5-node polytree CLG called Poly5CLG. The network structure of
Poly5CLG is shown in Figure 2. It consists of 2 discrete node T, C and 3 continuous nodes
Y, W, Z. We assume binary discrete nodes and scalar Gaussian continuous nodes in the model.
The corresponding CPDs are specified in Figure 3. Suppose leaf nodes C, Z are observable
evidence and they are instaniated as state 1, and 5.5 respectively.
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T Y

W

Z

C

Fig. 2. Poly5CLG: A demo CLG model consisting of 2 discrete nodes T, C and 3 continuous
nodes Y, W, Z.

T: Pr(T = 1) = 0.5, Pr(T = 2) = 0.5

C:

T T = 1 T = 2

Pr(C = 1|T) 0.8 0.3

Pr(C = 2|T) 0.2 0.7

Y: p(Y) = N (10, 1)

W:
p(W|T = 1) = N (−1 + Y, 1)
p(W|T = 2) = N (1 + Y, 1)

Z: p(Z) = N (0.5W, 1)

Fig. 3. Nodes CPDs for model Poly5CLG.

The algorithm is based on iterative computations. First, every node initializes its own λ, π

values and messages propagated to its parents (λ messages) and children (π messages).
Then, in each iteration, every node updates their λ, π values and messages, utill all of nodes
converge to their steady beliefs. For ease of exposition, here we describe the computing
process starting from evidence nodes towards their neighbors, and then propagating to other
hidden nodes. Further since we only need to know the posterior distributions for hidden
variables, we do not compute the messages back to evidence nodes. Starting with the
messages from nodes C, Z, it is easily understood that,

λ(C) =

[

1
0

]

, λ(Z) =

{

µ = 5.5

σ2 = 0
,

where µ, σ2 are mean and variance representing the continuous message. Then, the λ message
sending from C to its parent T can be obtained as

λC(T) = ∑
C

λ(C)P(C|T) = ∑
C

[

1 1
0 0

]

.

[

0.8 0.3
0.2 0.7

]

= [0.8 0.3],
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where . is the elementwise multiplication of matrices. Please note that computing λ message
sending from Z to its parent W is more complicated and subtle:

λZ(W) =
∫

Z
λ(Z)P(Z|W)dZ.

In general, this is essentially an inverse functional transformation for estimating the original
dependent variable based on the information of independent variable. Generally, let us
assume that the CPD of P(Z|W) is

P(Z|W) = N ( f (W), σ2
0 ),

where f (W) is an arbitrary deterministic function specifying the functional relationship
between Z and W. Suppose that we now know Z is distributed as N (µz, σ2

z ) (serving as
λ(Z)). Then, λZ(W) is actually the estimate of W based on this known information about Z,
computed as:

λZ(W) =
∫

Z
λ(Z)P(Z|W)dZ

=
∫

Z
N (µz, σ2

z )N ( f (W), σ2
0 )dZ

=
∫

Z

1√
2πσz

exp

{

− (Z − µz)2

2σ2
z

}

.

1√
2πσ0

exp

{

− (Z − f (W))2

2σ2
0

}

dZ

=
1

2πσ0σz

∫

Z
exp

{

−σ2
0 (Z − µz)2 + σ2

z (Z − f (W))2

2σ2
0 σ2

z

}

dZ

(13)

Let us denote the part of exponent in Equation (13) as E,

E =
σ2

0 (Z − µz)2 + σ2
z (Z − f (W))2

2σ2
0 σ2

z
.

E can be rearranged to be,

E =
Z2 − 2σ2

0 µz+2σ2
z f (W)

σ2
0+σ2

z
Z +

σ2
0 µ2

z+σ2
z f 2(W)

σ2
0+σ2

z

2σ2
0 σ2

z

σ2
0+σ2

z

=
(Z − U)2

2σ2
0 σ2

z

σ2
0+σ2

z

+
(µz − f (W))2

2(σ2
0 + σ2

z )
, (14)

78 Bayesian Networks

www.intechopen.com



Probabilistic Inference for Hybrid Bayesian Networks 9

where U =
σ2

0 µz+σ2
z f (W)

σ2
0+σ2

z
is a constant relative to variable Z. Substituting (14) back into (13),

λZ(W) =
1

2πσ0σz

∫

Z
exp

⎧

⎪

⎨

⎪

⎩

− (Z − U)2

2σ2
0 σ2

z

σ2
0+σ2

z

⎫

⎪

⎬

⎪

⎭

exp

{

(µz − f (W))2

2(σ2
0 + σ2

z )

}

dZ

=

√

σ2
0 + σ2

z√
2πσ0σz

∫

Z
exp

⎧

⎪

⎨

⎪

⎩

− (Z − U)2

2σ2
0 σ2

z

σ2
0+σ2

z

⎫

⎪

⎬

⎪

⎭

dZ

√
2πσ0σz

√

σ2
0 + σ2

z

1

2πσ0σz
exp

{

− ( f (W)− µz)2

2(σ2
0 + σ2

z )

}

=
1

√

2π(σ2
0 + σ2

z )
exp

{

− ( f (W)− µz)2

2(σ2
0 + σ2

z )

}

(15)

=
1

√

2π(σ2
0 + σ2

z )

√
2πσw

1√
2πσw

exp

{

− (W − µw)2

2σ2
w

}

=
σw

√

σ2
0 + σ2

z

N (µw, σ2
w), (16)

where µw, σ2
w are the mean and variance estimates for variable W, which always can be

obtained by rearranging the exponent in (15) and they must be functions of µz, σ0, σz. In our
algorithm, we use unscented transformation to estimate the post distributions for variables
undergone nonlinear functions. Note that the constant coefficient σw√

σ2
0+σ2

z

must be part of λ

message. It is very critical to keep the coefficient in place while the λ message is in the form
of mixture distributions so that it can be updated with correct weights of the components.
From (16), it also shows that the λ message is not a distribution. Instead, it is a probabilistic
likelihood function. In a special case such that Z is observed as the value z (µz = z and σ2

z = 0),
then Equation (15) can be simplified to:

λZ(W) =
1√

2πσ2
0

exp

{

− ( f (W)− z)2

2σ2
0

}

=
σw

σ0
N (µw, σ2

w), (17)

where µw is a function of z, and σw is a function of σ0. It is straightforward to extend Equation
(15), (16), and (17) for continuous node with multiple parents, by adding Gaussian terms from
the continuous parents and functions given discrete parents.
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Back to the concrete example, substituting actual functions and values into (17),

λZ(W) =
1√

2π × 1
exp

{

− (0.5W − 5.5)2

2 × 1

}

=
1√
2π

exp

{

− (W − 11)2

2 × 4

}

= 2N (µw = 11, σ2
w = 4). (18)

Since Z is the only child of W, from Equation (5), we have,

λ(W) = λZ(W) = 2N (µw = 11, σ2
w = 4).

For hidden root nodes T, Y, their π values are just their prior distributions,

π(T) = [0.5 0.5], π(Y) = N (µy = 10, σ2
y = 1).

Now we can compute π messages sending from T, Y to W respectively, according to Equation
(8) and (9),

πW(T) = αλC(T)π(T) = α[0.8 0.3].[0.5 0.5] = [0.7273 0.2727];

πW(Y) = π(Y) = N (µy = 10, σ2
y = 1).

Then,

π(W) = ∑
T

[

πW(T)
∫

Y
P(W|T, Y)πW(Y)dY

]

= 0.7273N (µw = 9, σ2
w = 2) + 0.2727N (µw = 11, σ2

w = 2),

which is a Gaussian mixture. So far, W has received all of messages from its parents and
children, so,

BEL(W) = α λ(W)π(W)

= α 2N (11, 4) [0.7273N (9, 2) + 0.2727N (11, 2)]

= α [2 ∗ 0.7273 ∗ 0.1167N (9.6667, 1.3333)] +

α [2 ∗ 0.2727 ∗ 0.1629N (11, 1.3333)]

= 0.6564N (9.6667, 1.3333) + 0.3436N (11, 1.3333) .

With (11) and (12), the λ messages sending from W to its parents are,

λW(T = 1) =
∫

W
λ(W)

∫

Y
P(W|T = 1, Y)πW(Y)dYdW

=
∫

W
2N (11, 4)N (9, 2)dW

= 2 ∗ 0.2334

= 0.4668 ,
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similarly,

λW(T = 2) =
∫

W
λ(W)

∫

Y
P(W|T = 2, Y)πW(Y)dYdW

=
∫

W
2N (11, 4)N (11, 2)dW

= 2 ∗ 0.3257

= 0.6514 ,

and from (15), (16),

λW(Y) = ∑
T

[

πW(T)
∫

W
λ(W)P(W|T, Y)dX

]

= 0.7273
∫

W
2N (11, 4)N (−1 + Y, 1)dW +

0.2727
∫

W
2N (11, 4)N (1 + Y, 1)dW

= 1.4546N (12, 5) + 0.5454N (10, 5) .

Therefore,

λ(T) = λC(T)λW(T)

= [0.8 0.3].[0.4668 0.6514]

= [0.37344 0.19542] ,

λ(Y) = λW(Y)

= 1.4546N (12, 5) + 0.5454N (10, 5) .

Finally the beliefs of nodes T, Y can be computed as,

BEL(T) = α λ(T)π(T)

= α [0.37344 0.19542].[0.5 0.5]

= [0.65647 0.34353] ,

BEL(Y) = α λ(Y)π(Y)

= α [1.4546N (12, 5) + 0.5454N (10, 5)]

N (10, 1)

= α [1.4546 ∗ 0.1167N (10.3333, 0.8333)] +

α [0.5454 ∗ 0.1629N (10, 0.8333)]

= 0.6564N (10.3333, 0.8333) +

0.3436N (10, 0.8333) .

Now, the message passing algorithm provides the posterior distributions for all of hidden
nodes T, Y, W. And since this is a poly tree model, the solution is exact.

Note that the presence of discrete parents for continuous variable makes the corresponding
continuous messages necessarily a mixture distribution. Unfortunately, the number of
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mixture components in the message increases exponentially with the size of joint state space
of the discrete parents. In order to scale the algorithm, one alternative is to combine or reduce
the mixture components into smaller ones to trade off complexity against accuracy.

2.3 Complexity and scalability

The complexity of exact inference for a hybrid model is essentially determined by the size of
the joint state space of all discrete parent nodes (i.e., interface nodes). It is easy to prove that,
in a connected CLG, all discrete parents will end up in one clique with at least one continuous
node Lerner (2002). Sometimes, even a CLG with very simple structure can give rise to an
intractable clique tree. For example, the network shown in Figure 4 will have all of its discrete
nodes in one clique, hence making the computations exponential in the size of the joint state
space of all discrete nodes. If each discrete node has 10 states, then the resulting clique will
have size 10n, where n is the number of discrete nodes.

A1 A2 AnA3 …

Y1 Y2 Y3 YnT E

Fig. 4. A simple CLG that has an exponential clique tree: A1, A2, ...An are discrete nodes, and
T, Y1, Y2, ..., Yn, E are continuous nodes.

DMP-HBN has the same problem when exact inference is required. This is because for each
state of a discrete parent node, its continuous child has to compute messages according to the
function defined in the CPD. Therefore, messages sent by a continuous node with a hybrid
CPD will be in the form of a Gaussian mixture in which the components are weighted by
probabilities passed from its discrete parents. In particular, as shown in Equaion (10) and
(12), π(X) and λX(U) are mixtures of Gaussians with the number of Gaussian components
equal to the size of the state space of its discrete parent D. When a mixture message
propagates to another continuous node with discrete parents, the message size will increase
again exponentially. However, while JT has to deal with this intractability, DMP-HBN has the
choice to approximate the original Gaussian mixture with a smaller number of components.
In many cases, a Gaussian mixture with significantly fewer components can approximate
the original density very well. Let us assume that f (x) is the true density, and f̂ (x) is the
approximate Gaussian mixture. We use the following distance measure as the metric, called
Normalized Integrated Square Error (NISE):

d =

∫

( f (x)− f̂ (x))2dx
∫

( f (x))2dx +
∫

( f̂ (x))2dx
.

An example shown in Figure 5 demonstrates a reasonable estimate using only 4 components

to approximate a Gaussian mixture with 20 components (
√

d < 3%). With a pre-defined error
bound, Gaussian mixture reduction methods such as the ones proposed in Kuo-Chu Chang
& Smith (2010) Schrempf et al. (2005) can be applied to find a good approximate mixture
with a smaller number of components. It is straightforward to incorporate these methods into
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DMP-HBN to make the algorithm scalable with an acceptable accuracy trade-off. However,
it is non-trivial to estimate the overall inference error after the messages are compressed and
propagated. In the next section, we will provide some performance results with numerical
experiments to evaluate the algorithm under various situations.

−5 0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Gaussian mixture reduction with bounded error

20−component GM

4−component app. GM

Fig. 5. Using a 4-component GM to approximate a 20-component GM with
√

d < 3%.

3. Numerical experiments

Theoretically, DMP-HBN can provide exact results for a polytree CLG. For verification
purpose, an example model called Poly12CLG as shown in Figure 6, was used for the
experiment. Assume evidence is observed on leaf nodes E, and Z. With random observations,
we conducted more than 30 independent experiments and compared DMP results with the
ones obtained by the Junction Tree algorithm. The latter algorithm is considered to be the
gold standard and the resulting solutions serve as the ground truth. All experiments show
that DMP-HBN provides results identical to the ground truth.

We also conducted scalability tests of DMP algorithm using the same example model
Poly12CLG. For many decision support applications, the variables of interest tend to be
discrete, such as feature identification, entity classifications, or situation hypotheses. In our
experiments, we first show how the assessments of hidden discrete nodes in a CLG are
affected after collapsing the Gaussian mixture into a single Gaussian when passing messages.
We use average absolute probability errors between two discrete distributions as the metric
to evaluate the performance. In general, when a node of interest is relatively far away from
the evidence, its posterior distribution would not deviate much from its prior. In that case, it
is difficult to show the impact of the approximation on the inference error. So we purposely
designed CPDs in Poly12CLG to move the true posterior probabilites away from its prior.
Figure 7 shows the average and maximum errors of the approximate posterior probabilities for
hidden discrete nodes V, A, L, B, H, and C, obtained after collapsing Gaussian mixtures into
a single term over 100 Monte Carlo simulations. Average and maximum difference between
the true posteriors and the priors over these 100 simulations are also shown in the figure for
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H

E

L

Z

C W

B Y

X

UA

V

Fig. 6. An example polytree CLG model called Poly12CLG, consisting of 7 discrete nodes
V, A, L, B, H, C, E and 5 continuous nodes U, X, Y, W, Z.

comparison. Figure 7(a) presents the estimate errors when collapsing π values only; Figure
7(b) shows the performance when collapsing λ messages only; and Figure 7 (c) displays
the inference errors when collapsing both π values and λ messages whenever a mixture of
Gaussians is present.

Notice that reducing the π value of a node does not affect the network “above” it because
the π message is being sent downward in the network. Similarly, since a λ message is
being sent upward, reducing a λ message will not affect the network “below” the node. For
example in Figure 7(a), the posterior probabilities of V and A are exact, and in Figure 7(b),
the estimates of L, B, H, and C are also exact without inference error. When reducing both π

values and λ messages, all posterior distributions are not exact any more. Results shown in
Figure 7(c) suggest that the approximation errors diminish when the nodes are farther away
from discrete parents. For example, the approximate errors for nodes L, H, and C are very
small. However, discrete parent nodes such as A, and B, are affected significantly. This is not
surprising due to the relatively large approximation errors when collapsing a multi-modal
Gaussian mixture into a single term. One way to achieve a desired accuracy is to specify a
pre-defined error bound whenever we try to reduce a Gaussian mixture into one with fewer
components. Although it is difficult to perform theoretical analysis of the total inference
error after propagation, it is possible to obtain bounded error if the threshold used is small
enough. Figure 8 demonstrates significantly better performance for the same model but with
the normalized ISE of the reduced Gaussian mixture limited to less than 5% each time. As can
be seen from the figure, the average and maximum errors for all nodes are well less than 1%.

Another example model called Loop13CLG (extended from Poly12CLG), shown in Figure 9,
was used for numerical experimentation on a network with loops. Again, we assume that leaf
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Fig. 7. Scalability test – performance loss after combining Gaussian mixture into one single
Gaussian.

nodes E and Z are observable evidence nodes. With random observations, Figure 10 shows
the average and maximum absolute errors of posterior probabilities for hidden discrete nodes
over 100 Monte Carlo simulations. All simulation runs converge in about 11 iterations. As
can be seen from the figure, average approximation errors caused by loopy propagation range
from less than 1% to about 5% for hidden discrete nodes.

We also tested DMP with some other networks with randomly pre-defined CPDs. All
simulation results suggest that the estimation errors reduce significantly as the node is farther
away from the discrete parent nodes.

4. Most probable explanation for hybrid Bayesian networks

In addition to computing the posterior distributions for hidden variables in Bayesian
networks, one other important inference task is to find the most probable explanation (MPE).
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Fig. 8. Accurate estimates of the posterior probabilities resulted by limiting approximation
error (< 5%) each time when reducing message with fewer components Gaussian mixture.
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UA

Fig. 9. Loop13CLG – an example CLG model with multiple loops, consisting of 7 discrete
nodes V, A, L, B, H, C, E and 6 continuous nodes U, X, TY, W, Z.

MPE provides the most likely configurations to explain away the evidence and helps to
manage hypotheses for decision making. In recent years, researchers have proposed a few
methods to find the MPE for discrete Bayesian networks. However, finding the MPE for
hybrid networks remains challenging. In the following sections, we will briefly describe an
up-to-date method to find the MPE in hybrid BNs based on max-product clique tree algorithm.

Let X represents the full set of variables in a Bayesian network, and E as a subset of X
containing variables observed, known as evidence. The MPE is the joint assignment of
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Fig. 10. Performance test with loopy CLG model.

W = X\E(subset of all hidden variables) such that:

MPE P(W|E = e) = arg max
w

P(W = w|E = e) (19)

where arg maxx f (x) represents the value of x for which f (x) is maximal.

Note that we have to look at the joint assignment to maximize the joint probability.
Individually most likely values of variables that maximize their marginal probabilities are
not necessarily part of the MPE. A very simple example is given below to demonstrate this
point. Let us look at the BN model consisting of only 3 nodes (D, E, and, F), shown in Figure
11, where D, E, and F are binary discrete random variables with the CPDs listed in the figure.

D

P(D)

d1

d2

0.5

0 5
D

d2 0.5

P(F|D) d1 d2

E F

P(E|D) d1 d2

( | )

0.9

0.1

f1

f2

0.45

0.55

P(E|D) d1 d2

0.6

0.4

e1

e2

0.4

0.6

Fig. 11. A simple Bayesian network model consisting of 3 binary discrete nodes (D, E, and, F).

Now let us assume that E is observed as e2. It is easy to show that

P(D|E = e2) =

[

d1 : 0.4
d2 : 0.6

]

, P(F|E = e2) =

[

f 1 : 0.63
f 2 : 0.37

]

,
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and

P(F|D, E = e2) = P(F|D) =

⎡

⎣

d1 d2

f1 0.9 0.45
f2 0.1 0.55

⎤

⎦ .

Therefore

P(D, F|E = e2) = P(F|D, E = e2)× P(D|E = e2) =

⎡

⎣

d1 d2

f1 0.36 0.27
f2 0.04 0.33

⎤

⎦ .

From the joint probability distribution, it is clear that the MPE of E = e2 is the configuration
of D = d1, F = f 1. If we choose the MPE by individually picking up the values with maximal
marginal probabilities, one will end up with a wrong answer as D = d2, F = f 1, which is
obviously not the true MPE.

Theoretically, to compute the maximal joint probability, we have

max
w

P(W|E = e) = max
Wi

n

∏
i=1

P(Wi|Pa(Wi), E = e) (20)

where Wi(i = 1, 2, . . . , n) are all of the hidden variables in W (with the total number of
variables in W being n), and Pa(Wi) are the parents of node Wi. Clique Tree algorithm has
been used in computing the MPE Koller & Friedman (2009), where one needs to replace the
marginalization operation with maximization operation for each potential. In this paper, we
call this method the max-product clique tree algorithm. And accordingly, the potentials in the
clique tree are called max-potentials.

4.1 Max-calibration of the clique tree for discrete Bayesian networks

The standard clique tree algorithm is a generalization of the variable elimination method for
Bayesian network inference. It first transforms the original Bayesian network into a clique
tree, which is a undirected poly-tree with cliques serving as nodes in the tree. Each clique is a
joint state space of more than one variables, associating with a function called potential. Once
a root clique is chosen, one needs to conduct a round trip message propagations in order to
have each clique updated by the given evidence. The message propagation from leaf nodes
to the root along the path is called upstreaming, also known as collecting evidence; while the
opposite is called downstreaming, also known as distributing evidence.

In the process of message propagation between two cliques, a standard protocol is applied.
Let us assume that two cliques Ci, Cj are neighbors in a clique tree, and separator Sij is
associated with the edge between Ci, Cj. Potentials for Ci, Cj and Sij are φ(Ci), φ(Cj) and
φ(Sij) respectively. Sending message from Ci to Cj along the separator Sij follows the message
passing protocol presented in Table 1. The sending process is also known as absorption,
namely, clique Cj absorbs information from clique Ci via their separator Sij.

Note that in Table 1, the first step of message propagation is to marginalizing out the variables
in Ci but not in Cj, so only variables in the separator are left. This is why traditional clique
tree algorithm is sometimes called sum-product clique tree method due to this summing out
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1. Let φ(Sij)
′ = ∑Ci\Sij

φ(Ci), — marginalizing the potential φ(Ci) onto the domain of separator φ(Sij),

i.e., projecting it to the domain of separator.

2. Let L(Sij) =
φ(Sij)

′

φ(Sij)
, — dividing the new potential of separator φ(Sij) by its old one. The ratio L(Sij)

is served as information ratio, also called "likelihood ratio", to update information by filtering out the
redundant part.

3. Let φ(Sij) = φ(Sij)
′, — storing the new potential of the separator for next round message passing.

4. Let φ(Cj) = φ(Cj) ∗ L(Sij), — multiplying information ratio from the separator to update potential
of φ(Cj) .

Table 1. Message passing protocol in standard clique tree algorithm

operation. In max-calibration of a clique tree, maximizing replaces marginalizing, while all
other operations remain the same in the protocol.

In discrete case, for MPE, it is straightforward to maximize out variables from the joint state
distribution. Suppose that we have a joint probability distribution of two binary discrete
random variables D, T(states of D, T are d1, d2, t1 and t2 respectively), shown as below:

P(D, T) =

⎡

⎣

t1 t2

d1 0.32 0.16
d2 0.39 0.13

⎤

⎦ .

To maximize out T, we have

max
T

P(D, T) = max
T

⎡

⎣

t1 t2

d1 0.32 0.16
d2 0.39 0.13

⎤

⎦ =

[

d1 0.32
d2 0.39

]

Similarly, if we want to maximize out D from the joint distribution of D, T, it will be:

max
D

P(D, T) = max
D

⎡

⎣

t1 t2

d1 0.32 0.16
d2 0.39 0.13

⎤

⎦ =

[

t1 0.39
t2 0.16

]

In principle, maximizing out one variable from a joint discrete space returns the marginal
maximums in the original joint probabilities along the dimension of this particular variable
being maximized over, for all of the configurations of the remaining variables.

With the maximizing substituted in the message propagation protocol, the clique tree will be
max-calibrated after conducting the same upstream and downstream message propagations.
Then each clique will be updated with the max-potential. After the max-calibration, further
maximizations on individual cliques can provide the MPE of all hidden variables. The proofs
are very similar to the proofs of the standard clique tree algorithm Jensen (1996) Dawid (1992).

4.2 Finding the MPE for a hybrid Bayesian network using max-product clique tree algorithm

For a hybrid Bayesian network, its clique tree contains at least one hybrid clique, in which both
discrete and continuous variables are involved. If we can find a way to conduct maximizing
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operations for the hybrid clique, we can then apply the max-calibration process similarly to
find the MPE for hybrid BNs.

Let us first take a close look at the hybrid joint space. Without loss of generality, we assume
that the continuous variables in the hybrid space are Gaussians. For arbitrary density,
theoretically, it is well known that a Gaussian mixture can be used to approximate the original
density in any desirable accuracy with sufficient number of components. A simple example
of the hybrid space, consisting of one binary discrete variable D with states d1, d2, and one
scalar Gaussian variable X, is used for demonstration. Assuming that the hybrid joint density
is

P(D, X) =

⎡

⎣

x

d1 0.2N (x; 1, 0.1)
d2 0.8N (x; 3, 3)

⎤

⎦ ,

where N (x; u, σ2) represents a scalar Gaussian density with mean u, and variance σ2, and
x is a real number. Note that P(D, X) is not a conditional density, nor is a Gaussian
mixture, but a hybrid joint density. For example, the joint density for D = d1, X = 0.5 is
0.2 ∗ N (0.5; 1, 0.1) = 0.325. If we sum out D, we then can obtain the marginal distribution of
X as the linear combination of two Gaussians with weights as 0.2, 0.8 respectively, which is
indeed a Gaussian mixture:

P(X) = 0.2N (x; 1, 0.1) + 0.8N (x; 3, 3).

Next, let us see how to maximize one variable from the hybrid joint space using this example.
The resulting function after maximizing over some variables is mapped onto the space of the
remaining variables. If the variable being maximized out is D from P(D, X), by applying the
maximizing rule, we have

P(X)max = max
D

P(D, X) = max[0.2N (x; 1, 0.1), 0.8N (x; 3, 3)],

where P(X)max is called the marginal maximum function of X. This is basically a function of x
with the values as either 0.2N (x; 1, 0.1), or 0.8N (x; 3, 3), whichever is bigger for a given x. As
shown in Figure 12, the max of two Gaussians is not a Gaussian mixture. However, because
of the closed form of Gaussian density, we can deterministically conclude that the peak of this
function is certainly located at one of the mean values among all Gaussian components. Proof
is omitted due to its obviousness.

Now let us turn to maximizing out the continuous variable X from the hybrid density P(D, X).
Again, by applying the maximizing rule, it is easy to obtain,

P(D)max = max
X

P(D, X) =

[

d1 0.2N (x = 1; 1, 0.1)
d2 0.8N (x = 3; 3, 3)

]

=

[

d1 0.2523
d2 0.1843

]

,

which are the peak points of densities for each weighted Gaussian component given each
state of the discrete variable, respectively. In the case of Gaussian density, the peak point is
obviously located at the mean, namely, max[N (x; u, σ2)] = N (x = u; u, σ2).
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Fig. 12. Maximizing out D from P(D, X) — the resulting function is the max of weighted
Gaussian components. In the figure, the red line represents the density of the Gaussian
mixture, the bolded black line represents the resulting max function, and the dashed black
line shows the original Gaussian components.

Accordingly, the MPE of P(D, X) can be obtained by further examining the value that
maximizes the marginal maximum function for each variable. Then,

MPE P(D, X) = {arg max
D

P(D)max, arg max
X

P(X)max} = {D = d1, x = 1}.

At this point, we know how to maximize out variables from both discrete joint space and
hybrid space. We still need to know how to maximize out variable from continuous joint
space in order to conduct max-calibration for hybrid model. Again, we assume that the
continuous variables are Gaussian. Maximizing out a continuous variable from continuous
joint space is equivalent to having the value of this variable being its marginal mean and then
substituting it into the original joint density function. Let us use a two-dimension Gaussian
density to explain the operation. For the sake of simplicity, we assume the two Gaussians X, Y
in different dimensions are independent of each other. Namely,

P(X, Y) = N
([

x
y

]

;

[

ux

uy

]

,

[

σ2
x 0

0 σ2
y

])

,

where

[

ux

uy

]

is the mean vector, and

[

σ2
x 0

0 σ2
y

]

is the covariance matrix. Maximizing out Y

from P(X, Y) to obtain the marginal maximum function of X is carried out as below,

P(X)max = max
Y

P(X, Y) = arg max
Y

1

2πσxσy
exp

(

−1

2

[

(x − ux)2

σ2
x

+
(y − uy)2

σ2
y

])

=
1√

2πσy

N (x; ux, σ2
x ).
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Given a clique tree of the hybrid model, a strong root of the clique tree, and evidence, this algorithm
returns the MPE of the evidence for the original hybrid Bayesian network.

1. Sending messages from leaf cliques to the strong root clique: message passing between cliques follows
the protocol shown in Table 1 except using maximizing to replace marginalizing.

2. After the strong root clique receives all messages, sending back messages to all leaf cliques: message
passing between cliques follows the protocol shown in Table 1 except using maximizing to replace
marginalizing.

3. Conducting further maximizing operation on each clique to obtain the marginal maximum function
for each hidden variable, then choosing the value of variable that maximizes its marginal maximum
function. Those values together compose the MPE.

Table 2. Hybrid max-product clique tree algorithm to find the MPE for hybrid Bayesian
networks

Similar derivation can be done for higher-dimension cases, and/or with dependent variables.

4.3 Division and multiplication between functions

In message passing protocol, shown in Table 1, we also note that division and multiplication
operations need to be defined for hybrid models. In this case, the only difference from the
discrete case is that how to apply continuous functions in these operations. The result of
functional division or multiplication may not have a closed form, but could be computed for
any given value of argument variable numerically. And for Gaussian densities, the peak value
of the resulting function can be obtained deterministically.

4.4 Hybrid max-product clique tree algorithm (HMP-CT)

Now we are ready to present the hybrid max-product cliquet tree algorithm (HMP-CT) for
finding the MPE in hybrid Bayesian networks in Table 2.

4.5 Numerical example - finding Hybird MPE

In this section, we use a simple hybrid model to demonstrate HMP-CT. With the model shown
in Figure 11, we change the node F to be a Gaussian variable and all other parameters and
network structure remain the same. The hybrid model with its new CPD is shown in Figure
13(a), where the ellipse is used to represent continuous variable.

There are only two cliques in the corresponding clique tree of the model, shown in Figure
13(b), in which the clique {D, F} is the strong root. Assuming that the observed evidence
E = e2, let us follow the algorithm described in Table 2 to find the MPE configuration of the
hidden nodes D, F.

First, the initial potentials of these two cliques are

φ(D, E) =

⎡

⎣

E=e2

d1 0.4
d2 0.6

⎤

⎦ , φ(D, F) =

⎡

⎣

f

d1 0.5N ( f ; 1, 0.5)
d2 0.5N ( f ; 3, 2)

⎤

⎦ .
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Fig. 13. A simple hybird Bayesian network model consisting of 2 binary discrete nodes (D, E)
and one Gaussian variable (F).

And the potential of the only separator D is uniformly initialized as φ(D) =

[

1
1

]

. Since

the strong root is {D, F}, the upstreaming message passing is then from the clique {D, E} to
{D, F}. We have

φ(D)′ = P(D)max = max
E

φ(D, E) =

[

d1 0.4
d2 0.6

]

.

The updated potential of D, F is,

φ(D, F) ← φ(D, F)× φ(D)′

φ(D)
=

⎡

⎣

f

d1 0.2N ( f ; 1, 0.5)
d2 0.3N ( f ; 3, 2)

⎤

⎦ .

Also we need to update the potential of the separator D to be φ(D) = φ(D)′ =
[

d1 0.4
d2 0.6

]

.

Now sending back the message from the root {D, F} to the leaf {D, E}, we have

φ(D)′ = max
F

φ(D, F) =

[

d1 0.2N ( f = 1; 1, 0.5)
d2 0.3N ( f = 3; 3, 2)

]

=

[

d1 0.1128
d2 0.0846

]

.

Again, the potential of D, E is updated as,

φ(D, E) ← φ(D, E)× φ(D)′

φ(D)
=

⎡

⎣

E=e2

d1 0.1128
d2 0.0846

⎤

⎦ .
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Now the max-calibration of the clique tree is complete. By further maximizing the potentials
onto each hidden variable, we have

φ(D)max = max
E

φ(D, E) =

[

d1 0.1128
d2 0.0846

]

,

and

φ(F)max = max
D

φ(D, F) = max(0.2N ( f ; 1, 0.5), 0.3N ( f ; 3, 2)) = max(0.1596, 0.0598) = 0.1596,

located at f = 1. Therefore, the MPE of E = e2 is {D = d1, F = 1}. From the joint posterior
distribution P(D, F|E = e2), the peak value of joint density associated with the MPE is 0.2257.

5. Summary

In this chapter, we presented a new inference algorithm called DMP-HBN to represent
probabilistic messages in the form of Gaussian mixture when continuous variables are
involved and allow exchanging messages between discrete and continuous variables directly.
This new algorithm provides an alternative for probabilistic inference in hybrid Bayesian
networks. It provides full density estimates for continuous variables and can be extended with
unscented transformation Sun & Chang (2007a) for the general hybrid models with nonlinear
and/or non-Gaussian distributions. Since DMP-HBN is a distributed algorithm utilizing only
local information, there is no need to transform the network structure as required by the
Junction Tree algorithm. Compared to our previous works in Sun & Chang (2007b), Sun
& Chang (2009), that need to partition the hybrid model into different network segments,
and then conduct message passing separately, DMP-BN can exchange messages directly
between discrete and continuous variables within an unified framework. In addition, the
algorithm does not require prior knowledge of the global network topology which could
be changing dynamically. This is a major advantage of the algorithm and is particularly
important to ensure scalable and reliable message exchanges in a large information network
where computations are done locally.

As shown in the empirical simulation results, DMP-HBN is scalable with a performance
tradeoff of losing some accuracy. For many decision support applications, we are mainly
interested in hidden discrete variables such as entity classifications or high level situation
hypotheses. The experimental results show that the estimation errors of the hidden discrete
variables depend on the network topology and are relatively modest, especially when the
variables of interest are far away from the discrete parent nodes. Theoretically, it is non-trivial
to estimate the overall performance bounds quantitatively due to message compressing and
propagation. Even though we can have the error bounded each time when we approximate
the original Gaussian mixture with less number of components, it is theoretically difficult to
estimate the total error after we propagate the approximate messages multiple times. Similar
problem exists in filtering for stochastic dynamic systems. This points to an important and
very interesting topic for future research.

In addition to the inference task of calculating posterior distributions, finding the MPE is
another important type of inference and it has a number of real-life applications in decision
support. In the chapter, we introduced and descibed in detail a hybrid max-calibration clique
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tree algorithm, called HMP-CT, to find the MPE for hybrid Bayesian networks. We derived
all of required operations in the calibration process. Different from the standard sum-product
clique tree algorithm, HMP-CT maximizes out variables from the clique potentials instead of
marginalizing.

As mentioned in Section 4.3, division and multiplication in message propagation process for
hybrid model require functional operations. Further investigations are needed in order to
find the better representations of the resulting functions to save computations. In the process,
what we need is to obtain the locations (values of variables), where maximize the resulting
functions.

To our best knowledge, little research has been done for finding the MPE in hybrid BN
models. On the other hand, it is almost inevitable to have continuous variables involved when
modeling a real-life problem. It is especially useful to have the MPE for managing multiple
most likely hypotheses in many decision support systems. Also, finding the MPE is essentially
a global searching problem as to find the maximum. For a genearal optimization problem, if
we can decompose the joint state space and model the cost function by a BN-like structure,
we can then apply max-calibration algorithm to solve it.

Similarly and with the obvious proof, min-calibration clique tree algorithm can provide the
least probable explanation (LPE). In some interesting domains, the LPE is very useful. For
example, in prediction market, we always need to know the minimum possible asset of a
trader in case that some random events happen to occur that are against this trader’s bet.
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