3,121 research outputs found
Antcin K, a Triterpenoid Compound from Antrodia camphorata
The purpose of this study was to screen firstly the potential effects of antcin K (AnK), the main constituent of the fruiting body of Antrodia camphorata, in vitro and further evaluate the activities and mechanisms in high-fat-diet- (HFD-) induced mice. Following 8-week HFD-induction, mice were treated with AnK, fenofibrate (Feno), metformin (Metf), or vehicle for 4 weeks afterward. In C2C12 myotube cells, the membrane GLUT4 and phospho-Akt expressions were higher in insulin and AnK-treated groups than in the control group. It was observed that AnK-treated mice significantly lowered blood glucose, triglyceride, total cholesterol, and leptin levels in AnK-treated groups. Of interest, AnK at 40 mg/kg/day dosage displayed both antihyperglycemic effect comparable to Metf (300 mg/kg/day) and antihypertriglyceridemic effect comparable to Feno (250 mg/kg/day). The combination of significantly increased skeletal muscular membrane expression levels of glucose transporter 4 (GLUT4) but decreased hepatic glucose-6-phosphatase (G6 Pase) mRNA levels by AnK thus contributed to a decrease in blood glucose levels. Furthermore, AnK enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK) expressions in the muscle and liver. Moreover, AnK treatment exhibited inhibition of hepatic fatty acid synthase (FAS) but enhancement of fatty acid oxidation peroxisome proliferator-activated receptor α (PPARα) expression coincident with reduced sterol response element binding protein-1c (SREBP-1c) mRNA levels in the liver may contribute to decreased plasma triglycerides, hepatic steatosis, and total cholesterol levels. The present findings indicate that AnK displays an advantageous therapeutic potential for the management of type 2 diabetes and hyperlipidemia
Understanding Multidecadal Climate Changes
The 2012 National Taiwan University International Science Conference on Climate Change focused on two of the most difficult challenges in the study of climate change. The 23 invited reviews at the conference were presented in hour-long segments, each beginning with a lecture and followed by discussion. These reviews were augmented by 20 contributed oral and poster papers. The AMOC fingerprints described at the meeting may be used for reconstructing AMOC variations in the past and monitoring AMOC variations in the future. Modeling studies indicate that the AMOC weakens most at northern high latitudes in response to increasing greenhouse gas concentrations. The number, intensity, tracks, and landfall locations of WNP TCs also exhibit strong decadal or multidecadal variations. When adjusted for likely missed TCs, the observational record does not show evidence of a significant secular trend in North Atlantic hurricane activity
Reduced Ca2+ transport across sarcolemma but enhanced spontaneous activity in cardiomyocytes isolated from left atrium-pulmonary veins tissue of myopathic hamster
<p>Abstract</p> <p>Background</p> <p>Several lines of evidence point to a particularly important role of the left atrium (LA) in initiating and maintaining atrial fibrillation (AF). This role may be related to the location of pulmonary veins (PVs) in the LA. The aim of the present study was to investigate the action potential (AP) and ionic currents in LA-PV cardiomyocytes isolated from Bio14.6 myopathic Syrian hamsters (36-57 week-old) versus age-matched F1B healthy control hamsters.</p> <p>Methods and Results</p> <p>Whole-cell patch-clamp techniques were used to record AP in current-clamp mode and ionic currents in voltage-clamp mode. The results obtained show that in both healthy and myopathic LA-PV tissue spontaneously discharging cardiomyocytes can be found, but they are more numerous in myopathic (9/29) than in healthy hamsters (4/42, p < 0.05 by χ<sup>2 </sup>analysis). Myopathic myocytes have shorter AP duration (APD) with smaller I<sub>Ca,L </sub>and I<sub>NCX </sub>than the healthy control. The currents I<sub>TO</sub>, I<sub>K</sub>, I<sub>K1 </sub>and I<sub>Ca,T </sub>are not significantly different in myopathic versus healthy cells.</p> <p>Conclusions</p> <p>Our results indicate that in myopathic Syrian hamsters LA-PV cardiomyocytes are more prone to automatic rhythms. Also, they show altered electrophysiologic properties, which may be due to abnormal Ca<sup>2+ </sup>channels and may account for contractile dysfunction.</p
Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses
AbstractThe objectives of this work were to study the responses of ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and physiological parameters of bitter melon (BM), sponge gourd (SG), and winter squash (WS) under waterlogged and low temperature conditions. The BM and SG plants were subjected to 0–72h flooding treatments. Moreover, BM and WS plants were exposed to chilling at 12/7°C (day/night) for 0–72h. The results show that different genotypes responded differently to environmental stress according to their various antioxidant enzymes and physiological parameters. The activity of APX in roots and leaves of SG plants significantly higher than that of BM plants during continuous flooding. Significant increases in SOD activity in leaves of WS plants were also observed throughout the entire chilling duration compared to BM plants. On the basis of our observations, we conclude that increased APX and SOD activities provide SG and WS plants with increased waterlogging and chilling stress tolerance, respectively. Both APX and SOD activities can be used for selecting BM lines with the best tolerances to water logging and chilling stresses
Bacteriostatic Substrate by Conductivity Method and Electric Spark Discharge Method Combined with Electrospinning for Silver Dressing
This study uses the conductivity method, Electric Spark Discharge Method, and the electrospinning technique to develop a better silver-based antibacterial agent. The preparation process is free of chemical substances and also conforms to the green energy-saving process. The silver iodide was prepared in an iodine agar medium by using the conductivity method. Multiple bacteriostasis experiments showed that the molds grew in the position with iodine of the culture medium after 6 days, as well as in the position with silver iodide after 10 days. The results prove that silver iodide has better bacteriostatic ability than povidone iodine. The nanosilver colloid was prepared in the PVA solution by using the Electric Spark Discharge Method. UV-Vis, Zetasizer, and SEM-EDX analyses proved that the PVA solution contained nanosilver colloid with good suspension stability. Finally, the electrospinning technique was used to spin the PVA solution with nanosilver colloid into the PVA nanofibrous membrane. According to UV-Vis analysis, the absorption peak of this nanofibrous membrane is about 415 nm, meaning this nanofibrous membrane contains nucleate nanosilver colloid, and is very suitable for antiseptic dressing
A novel randomly textured phosphor structure for highly efficient white light-emitting diodes
We have successfully demonstrated the enhanced luminous flux and lumen efficiency in white light-emitting diodes by the randomly textured phosphor structure. The textured phosphor structure was fabricated by a simple imprinting technique, which does not need an expensive dry-etching machine or a complex patterned definition. The textured phosphor structure increases luminous flux by 5.4% and 2.5% at a driving current of 120 mA, compared with the flat phosphor and half-spherical lens structures, respectively. The increment was due to the scattering of textured surface and also the phosphor particles, leading to the enhancement of utilization efficiency of blue light. Furthermore, the textured phosphor structure has a larger view angle at the full width at half maximum (87°) than the reference LEDs
Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study
Curcumin has been shown to exert potential antitumor activity in vitro and in vivo involved in multiple signaling pathways. However, the application of curcumin is still limited because of its poor hydrophilicity and low bio-availability. In the present study, we investigated the therapeutic effects of a novel and water soluble bis(hydroxymethyl) alkanoate curcuminoid derivative, MTH-3, on human breast adenocarcinoma MDA-MB-231 cells. This study investigated the effect of MTH-3 on cell viability, cell cycle and induction of autophagy and apoptosis in MDA-MB-231 cells. After 24-h treatment with MTH-3, a concentration-dependent decrease in MDA-MB-231 cell viability was observed, and the IC50 value was 5.37±1.22 μM. MTH-3 significantly triggered G2/M phase arrest and apoptosis in MDA-MB-231 cells. Within a 24-h treatment, MTH-3 decreased the CDK1 activity by decreasing CDK1 and cyclin B1 protein levels. MTH-3-induced apoptosis was further confirmed by morphological assessment and Annexin V/PI staining assay. Induction of apoptosis caused by MTH-3 was accompanied by an apparent increase of DR3, DR5 and FADD and, as well as a marked decrease of Bcl-2 and Bcl-xL protein expression. MTH-3 also decreased the protein levels of Ero1, PDI, PERK and calnexin, as well as increased the expression of IRE1α, CHOP and Bip that consequently led to ER stress and MDA-MB-231 cell apoptosis. In addition, MTH-3-treated cells were involved in the autophagic process and cleavage of LC3B was observed. MTH-3 enhanced the protein levels of LC3B, Atg5, Atg7, Atg12, p62 and Beclin-1 in MDA-MB-231 cells. Finally, DNA microarray was carried out to investigate the level changes of gene expression modulated by MTH-3 in MDA-MB-231 cells. Taken together, our results suggest that MTH-3 might be a novel therapeutic agent for the treatment of triple-negative breast cancer in the near future
Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats
BACKGROUND: Caffeic acid phenethyl ester (CAPE) has been shown to protect the heart against ischemia/reperfusion (I/R) injury by various mechanisms including its antioxidant effect. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic acid phenethyl amide (CAPA), on I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats. METHODS: Type 1 diabetes mellitus was induced in Sprague–Dawley rats by a single intravenous injection of 60 mg/kg STZ. To produce the I/R injury, the left anterior descending coronary artery was occluded for 45 minutes, followed by 2 hours of reperfusion. CAPA was pretreated intraperitoneally 30 minutes before reperfusion. An analog devoid of the antioxidant property of CAPA, dimethoxyl CAPA (dmCAPA), and a nitric oxide synthase (NOS) inhibitor (Nω-nitro-l-arginine methyl ester [l-NAME]) were used to evaluate the mechanism involved in the reduction of the infarct size following CAPA-treatment. Finally, the cardioprotective effect of chronic treatment of CAPA was analyzed in diabetic rats. RESULTS: Compared to the control group, CAPA administration (3 and 15 mg/kg) significantly reduced the myocardial infarct size after I/R, while dmCAPA (15 mg/kg) had no cardioprotective effect. Interestingly, pretreatment with a NOS inhibitor, (l-NAME, 3 mg/kg) eliminated the effect of CAPA on myocardial infarction. Additionally, a 4-week CAPA treatment (1 mg/kg, orally, once daily) started 4 weeks after STZ-induction could effectively decrease the infarct size and ameliorate the cardiac dysfunction by pressure-volume loop analysis in STZ-induced diabetic animals. CONCLUSIONS: CAPA, which is structurally similar to CAPE, exerts cardioprotective activity in I/R injury through its antioxidant property and by preserving nitric oxide levels. On the other hand, chronic CAPA treatment could also ameliorate cardiac dysfunction in diabetic animals
Synthesis and anti-HIV activity of 2′-deoxy-2′-fluoro-4′-C-ethynyl nucleoside analogs
Based on the favorable antiviral profiles of 4′-substituted nucleosides, novel 1-(2′-deoxy-2′-fluoro-4′-C-ethynyl-β-D-arabinofuranosyl)-uracil (1a), -thymine (1b), and – cytosine (2) analogues were synthesized. Compounds 1b and 2 exhibited potent anti-HIV-1 activity with IC50 values of 86 and 1.34 nM, respectively, without significant cytotoxicity. Compound 2 was 35-fold more potent than AZT against wild-type virus, and also retained nanomolar antiviral activity against resistant strains, NL4-3(K101E) and RTMDR. Thus, 2 merits further development as a novel NRTI drug
- …