1,933 research outputs found

    Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

    Full text link
    When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly localize the full objects. We propose the multiple instance curriculum learning (MICL) method, which injects curriculum learning (CL) into the multiple instance learning (MIL) framework. The MICL method starts by automatically picking the easy training examples, where the extent of the segmentation masks agree with detection bounding boxes. The training set is gradually expanded to include harder examples to train strong detectors that handle complex images. The proposed MICL method with segmentation in the loop outperforms the state-of-the-art weakly supervised object detectors by a substantial margin on the PASCAL VOC datasets.Comment: Published in BMVC 201

    Simulation analysis of manipulating light propagation through turbid Media

    Get PDF
    We model light propagation through turbid media by employing the pseudospectral time-domain (PSTD) simulation technique. With specific amplitude and phase, light can be manipulated to propagate through turbid media via multiple scattering. By exploiting the flexibility of the PSTD simulation, we analyze factors that contribute to enhancing light penetration. Specific research findings suggest that it is possible to propagate light with specific amplitude/phase. The reported simulation analysis enables quantitative analyses of directing light through turbid media. Please click Additional Files below to see the full abstract

    Boosting Factual Consistency and High Coverage in Unsupervised Abstractive Summarization

    Get PDF
    Abstractive summarization has gained attention because of the positive performance of large-scale, pretrained language models. However, models may generate a summary that contains information different from the original document. This phenomenon is particularly critical under the abstractive methods and is known as factual inconsistency. This study proposes an unsupervised abstractive method for improving factual consistency and coverage by adopting reinforcement learning. The proposed framework includes (1) a novel design to maintain factual consistency with an automatic question-answering process between the generated summary and original document, and (2) a novel method of ranking keywords based on word dependency, where keywords are used to examine the coverage of the key information preserved in the summary. The experimental results show that the proposed method outperforms the reinforcement learning baseline on both the evaluations for factual consistency and coverage

    High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator

    Get PDF
    Abstract—Pentacene-based organic thin-film transistors (OTFTs) with solution-processed barium titanate (Ba1.2Ti0.8O3) as a gate insulator are demonstrated. The electrical properties of pentacene-based TFTs show a high field-effect mobility of 8.85 cm2 · V−1 · s−1, a low threshold voltage of −1.89 V, and a low subthreshold slope swing of 310 mV/decade. The chemical composition and binding energy of solution-processed barium titanate thin films are analyzed through X-ray photoelectron spectroscopy. The matching surface energy on the surface of the barium titanate thin film is 43.12 mJ · m−2, which leads to Stranski–Krastanov mode growth, and thus, high mobility is exhibited in pentacene-based TFTs. Index Terms—Barium titanate, high field-effect mobility, high permittivity, organic thin-filmtransistor (OTFT), solution process
    corecore