11 research outputs found

    Dementia Assessment Using Mandarin Speech with an Attention-based Speech Recognition Encoder

    Full text link
    Dementia diagnosis requires a series of different testing methods, which is complex and time-consuming. Early detection of dementia is crucial as it can prevent further deterioration of the condition. This paper utilizes a speech recognition model to construct a dementia assessment system tailored for Mandarin speakers during the picture description task. By training an attention-based speech recognition model on voice data closely resembling real-world scenarios, we have significantly enhanced the model's recognition capabilities. Subsequently, we extracted the encoder from the speech recognition model and added a linear layer for dementia assessment. We collected Mandarin speech data from 99 subjects and acquired their clinical assessments from a local hospital. We achieved an accuracy of 92.04% in Alzheimer's disease detection and a mean absolute error of 9% in clinical dementia rating score prediction.Comment: submitted to IEEE ICASSP 202

    Characterization of membranous and cytoplasmic EGFR expression in human normal renal cortex and renal cell carcinoma

    Get PDF
    Metastatic renal cell carcinoma (RCC) is highly resistant to conventional systemic treatments, including chemotherapy, radiotherapy and hormonal therapies. Previous studies have shown over-expression of EGFR is associated with high grade tumors and a worse prognosis. Recent studies suggest anticancer therapies targeting the EGFR pathway have shown promising results in clinical trials of RCC patients. Therefore, characterization of the level and localization of EGFR expression in RCC is important for target-dependent therapy. In this study, we investigated the clinical significance of cellular localization of EGFR in human normal renal cortex and RCC. RCC and adjacent normal kidney tissues of 63 patients were obtained for characterization of EGFR expression. EGFR protein expression was assessed by immunohistochemistry on a scale from 0 to 300 (percentage of positive cells × staining intensity) and Western blotting. EGFR membranous staining was significantly stronger in RCC tumors than in normal tissues (P < 0.001). In contrast, EGFR cytoplasmic staining was significantly higher in normal than in tumor tissues (P < 0.001). The levels of membranous or cytoplasmic EGFR expression in RCC tissues were not correlated with sex, tumor grade, TNM stage or overall survival (P > 0.05). These results showed abundant expression of membranous EGFR in RCC, and abundant expression of cytoplasmic EGFR in normal tissues. EGFR expression in RCC was mostly located in the cell membrane, whereas the EGFR expression in normal renal tissues was chiefly seen in cytoplasm. Our results suggest different locations of EGFR expression may be associated with human renal tumorigenesis

    Recovery of valuable metals from electroplating sludge with reducing additives via vitrification

    No full text
    In this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet=4:6) and then heated to 1450°C. The cooled product could be separated into slag and ingot. An atomic absorption spectrometer was used to determine the metal levels of specimens and toxicity characteristic leaching procedure (TCLP) tests, whereas the crystalline and surface characteristics were examined using quantitative X-ray diffraction (XRD) analysis and scanning electron microscopy, respectively. With a glassy structure, the slag was mainly composed of Ca, Si, and Mg. The TCLP results of slags met the Taiwan regulated standards, suggesting that slag can be used for recycling purposes. With the aid of additives, the crystalline phase of slag was transformed form CaMgSiO into CsSiO. The ingots were mainly composed of Ni (563,000-693,800mg/kg), Cu (79,900-87,400mg/kg), and Fe (35,000-43,600mg/kg) (target metals) due the gravity separation during vitrification. At appropriate additives/sludge ratios (>0.2), >95% of target metals gathered in the ingot as a recoverable form (Ni-Fe alloy). The high Ni level of slag suggests that the ingot can be used as the raw materials for smelters or the additives for steel making. Therefore, the vitrification approach of this study is a promising technology to recover valuable metals from Ni-Cu electroplating sludge

    Valence Oscillation of Ru Active Sites for Efficient and Robust Acidic Water Oxidation

    No full text
    The continuous oxidation and leachability of active sites in Ru-based catalysts hinder practical application in proton-exchange membrane water electrolyzers (PEMWE). Herein, robust inter-doped tungsten–ruthenium oxide heterostructures [(Ru–W)Ox] fabricated by sequential rapid oxidation and metal thermomigration processes are proposed to enhance the activity and stability of acidic oxygen evolution reaction (OER). The introduction of high-valent W species induces the valence oscillation of the Ru sites during OER, facilitating the cyclic transition of the active metal oxidation states and maintaining the continuous operation of the active sites. The preferential oxidation of W species and electronic gain of Ru sites in the inter-doped heterostructure significantly stabilize RuOx on WOx substrates beyond the Pourbaix stability limit of bare RuO2. Furthermore, the asymmetric Ru–O–W active units are generated around the heterostructure interface to adsorb the oxygen intermediates synergistically, enhancing the intrinsic OER activity. Consequently, the inter-doped (Ru–W)Ox heterostructures not only demonstrate an overpotential of 170 mV at 10 mA cm−2 and excellent stability of 300 h in acidic electrolytes but also exhibit the potential for practical applications, as evidenced by the stable operation at 0.5 A cm−2 for 300 h in PEMWE

    The anti-TH17 polarization effect of Indigo naturalis and tryptanthrin by differentially inhibiting cytokine expression

    No full text
    Ethnopharmacological relevance: The Chinese herbal medicine Qing-Dai (also known as Indigo naturalis) extracted from indigo-bearing plants including Baphicacanthus cusia (Ness) Bremek was previously reported to exhibit anti-psoriatic effects in topical treatment. TH17 was later established as a key player in the pathogenesis of psoriasis. We investigated the anti-TH17 effect of Indigo naturalis and its active compounds. The aim of this study is to evaluate the toxicity of Indigo naturalis (IN) and its derivatives on five cell types involved in psoriasis, and to study the anti-inflammatory mechanism for the toxicity. Materials and methods: Following the fingerprint and quantity analysis of indirubin, indigo, and tryptanthrin in IN extract, we used MTS kits to measure the anti-proliferative effect of IN and three active compounds on five different cell types identified in psoriatic lesions. Quantitative RT-PCR analysis was used to measure the expression of various genes identified in the activated keratinocytes and TH17 polarized gene expression in RORÎłt-expressing T cells. Results: We showed that IN differentially inhibited the proliferation of keratinocytes and endothelial cells but not monocytes, fibroblasts nor Jurkat T cells. Among three active compounds identified in IN, tryptanthrin was the most potent compound to reduce their proliferation. In addition to differentially reducing IL6 and IL8 expression, both IN and tryptanthrin also potently decreased the expression of anti-microbial S100A9 peptide, CCL20 chemokine, IL1B and TNFA cytokines, independent of NF-ÎșB-p65-activation. Their attenuating effect was also detected on the expression of signature cytokines or chemokines induced during RORÎłT-induced TH17 polarization. Conclusions: We were the first to confirm a direct anti-TH17 effect of both IN herbal extract and tryptanthrin

    Transcriptome-level assessment of the impact of deformed wing virus on honey bee larvae

    No full text
    Deformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≄ 2 or ≀ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture

    Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting

    No full text
    Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current–voltage (<i>I</i>–<i>V</i>) characteristics as an indicator to qualify the <i>I</i>–<i>V</i> sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications
    corecore