5,578 research outputs found

    A Study of the Cognition-Action Gap in Knowledge Management

    Get PDF
    We investigated three types of volitional control mechanisms that may impact people’s knowledge management (KM) practices. Our results show that, when employing KM, people do not always perform in a manner consis- tent with their beliefs concerning attitudes and intentions. This cognition-behavior inconsistency can be ex- plained by volitional control mechanisms. Specifically, both perceived self-efficacy (Bandura 1997) and action control (Kuhl and Bechmänn 1985) play a role in motivating individuals to share and use knowledge, while perceived behavioral control does not. In addition, action/state orientation moderates a person’s enactment of subjective norm and self-efficacy beliefs into intentions just as it moderates enactment of perceived behavioral control belief into behaviors. These results have important theoretical and managerial implication

    Ixora parviflora Protects against UVB-Induced Photoaging by Inhibiting the Expression of MMPs, MAP Kinases, and COX-2 and by Promoting Type I Procollagen Synthesis

    Get PDF
    Ixora parviflora with high polyphenol content exhibited antioxidant activity and reducing UVB-induced intracellular reactive oxygen species production. In this study, results of the photoaging screening experiments revealed that IPE at 1000 μg/mL reduced the activity of bacterial collagenase by 92.7 ± 4.2% and reduced the activity of elastase by 32.6 ± 1.4%. Therefore, we investigated the mechanisms by which IPE exerts its anti-photoaging activity. IPE at 1 μg/mL led to an increase in type I procollagen expression and increased total collagen synthesis in fibroblasts at 5 μg/mL. We found that IPE inhibited MMP-1, MMP-3, and MMP-9 expression at doses of 1, 5, and 10 μg/mL, respectively, in fibroblasts exposed to UV irradiation (40 mJ/cm2). Gelatin zymography assay showed that IPE at 50 μg/mL inhibited MMP-9 secretion/activity in cultured fibroblasts after UVB exposure. In addition, IPE inhibited the phosphorylation of p38, ERK, and JNK induced by UVB. Furthermore, IPE inhibited the UVB-induced expression of Smad7. In addition, IPE at 1 μg/mL inhibited NO production and COX-2 expression in UV-exposed fibroblasts. These findings show that IPE exhibits anti-inflammatory and anti-photoaging activities, indicating that IPE could be a potential anti-aging agent

    Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deciphering the mechanisms that modulate the inflammatory response induced by microglial activation not only improves our insight into neuroinflammation but also provides avenues for designing novel therapies that could halt inflammation-induced neuronal degeneration. Decreasing glycogen synthase kinase-3β (GSK-3β) activity has therapeutic benefits in inflammatory diseases. However, the exact molecular mechanisms underlying GSK-3β inactivation-mediated suppression of the inflammatory response induced by microglial activation have not been completely clarified. Tumor necrosis factor-α (TNF-α) plays a central role in injury caused by neuroinflammation. We investigated the regulatory effect of GSK-3β on TNF-α production by microglia to discern the molecular mechanisms of this modulation.</p> <p>Methods</p> <p>Lipopolysaccharide (LPS) was used to induce an inflammatory response in cultured primary microglia or murine BV-2 microglial cells. Release of TNF-α was measured by ELISA. Signaling molecules were analyzed by western blotting, and activation of NF-κB and AP-1 was measured by ELISA-based DNA binding analysis and luciferase reporter assay. Protein interaction was examined by coimmunoprecipitation.</p> <p>Results</p> <p>Inhibition of GSK-3β by selective GSK-3β inhibitors or by RNA interference attenuated LPS-induced TNF-α production in cultured microglia. Exploration of the mechanisms by which GSK-3β positively regulates inflammatory response showed that LPS-induced IκB-α degradation, NF-κBp65 nuclear translocation, and p65 DNA binding activity were not affected by inhibition of GSK-3β activity. However, GSK-3β inactivation inhibited transactivation activity of p65 by deacetylating p65 at lysine 310. Furthermore, we also demonstrated a functional interaction between mixed lineage kinase 3 (MLK3) and GSK-3β during LPS-induced TNF-α production in microglia. The phosphorylated levels of MLK3, MKK4, and JNK were increased upon LPS treatment. Decreasing GSK-3β activity blocked MLK3 signaling cascades through disruption of MLK3 dimerization-induced autophosphorylation, ultimately leading to a decrease in TNF-α secretion.</p> <p>Conclusion</p> <p>These results suggest that inactivation of GSK-3β might represent a potential strategy to downregulate microglia-mediated inflammatory processes.</p

    STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response

    Get PDF
    Interferons (IFNs) are key regulators for both innate and adaptive immune responses. By screening ENU-mutagenized mice, we identified a pedigree- P117 which displayed impaired response to type I, but not type II, IFNs. Through inheritance test, genetic mapping and sequencing, we found a T to A point mutation in the 5' splice site of STAT2 intron 4–5, leading to cryptic splicing and frame shifting. As a result, the expression of STAT2 protein was greatly diminished in the mutant mice. Nonetheless, a trace amount of functional STAT2 protein was still detectable and was capable of inducing, though to a lesser extent, IFNα-downstream gene expressions, suggesting that P117 is a STAT2 hypomorphic mutant. The restoration of mouse or human STAT2 gene in P117 MEFs rescued the response to IFNα, suggesting that the mutation in STAT2 is most likely the cause of the phenotypes seen in the pedigree. Development of different subsets of lymphocytes appeared to be normal in the mutant mice except that the percentage and basal expression of CD86 in splenic pDC and cDC were reduced. In addition, in vitro Flt3L-dependent DC development and TLR ligand-mediated DC differentiation were also defective in mutant cells. These results suggest that STAT2 positively regulates DC development and differentiation. Interestingly, a severe impairment of antiviral state and increased susceptibility to EMCV infection were observed in the mutant MEFs and mice, respectively, suggesting that the remaining STAT2 is not sufficient to confer antiviral response. In sum, the new allele of STAT2 mutant reported here reveals a role of STAT2 for DC development and a threshold requirement for full functions of type I IFNs

    THE EFFECT OF INSULIN AND CARBOHYDRATE SUPPLEMENTATION ON GLYCOGEN REPLENISHMENT AMONG DIFFERENT HINDLIMB MUSCLES IN RATS FOLLOWING PROLONGED SWIMMING

    Get PDF
    In the present study we investigated the interactive effects of insulin and carbohydrate on glycogen replenishment in different rat hindlimb muscles. Forty male Sprague Dawley rats were assigned to 5 groups, including 1) sedentary control with carbohydrate supplement (2 g glucose · kg body wt-1), 2) sedentary rats with 16 hours recovery, carbohydrate and insulin (0.5 U · kg body wt-1), 3) swimming without recovery, 4) swimming with 16 hours recovery and carbohydrate supplement, and 5) swimming with 16 hours recovery, carbohydrate and insulin. The swimming protocol consisted of two 3 h swimming sections, which were separated by a 45 min rest. The insulin and carbohydrate were administered to the rats immediately after exercise. At the end of the experiment, the soleus (S), plantaris (P), quadriceps (Q) and gastrocnemius (G) were surgically excised to evaluate glycogen utilization and replenishment. We observed that glycogen utilization was significantly lower in G and Q than S and P during swimming (p <0.05), and S showed the greatest capacity of glycogen resynthesis after post-exercise recovery (p <0.05). In the sedentary state, the glycogen synthesis did not differ among hindlimb muscles during insulin and carbohydrate treatments. Interestingly, with insulin and carbohydrate, the glycogen resynthesis in S and P were significantly greater than in Q and G following post-exercise recovery (p <0.05). We therefore concluded that the soleus and plantaris are the primary working muscles during swimming, and the greatest glycogen replenishment capacity of the soleus during post-exercise recovery is likely due to its highest insulin sensitivity

    Inhibitory Effects of Terminalia catappa on UVB-Induced Photodamage in Fibroblast Cell Line

    Get PDF
    This study investigated whether Terminalia catappa L. hydrophilic extract (TCLW) prevents photoaging in human dermal fibroblasts after exposure to UVB radiation. TCLW exhibited DPPH free radical scavenging activity and protected erythrocytes against AAPH-induced hemolysis. In the gelatin digestion assay, the rates of collagenase inhibition by TCL methanol extract, TCLW, and its hydrolysates were greater than 100% at the concentration of 1 mg/mL. We found that serial dilutions of TCLW (10–500 μg/mL) inhibited collagenase activity in a dose-dependent manner (82.3% to 101.0%). However, TCLW did not significantly inhibit elastase activity. In addition, TCLW inhibited MMP-1 and MMP-9 protein expression at a concentration of 25 μg/mL and inhibited MMP-3 protein expression at a concentration of 50 μg/mL. TCLW also promoted the protein expression of type I procollagen. We also found that TCLW attenuated the expression of MMP-1, -3, and -9 by inhibiting the phosphorylation of ERK, JNK, and p38. These findings suggest that TCLW increases the production of type I procollagen by inhibiting the activity of MMP-1, -3 and -9, and, therefore, has potential use in anti-aging cosmetics
    corecore