1,761 research outputs found

    A Simple Model for Cavity Enhanced Slow Lights in Vertical Cavity Surface Emission Lasers

    Full text link
    We develop a simple model for the slow lights in Vertical Cavity Surface Emission Lasers (VCSELs), with the combination of cavity and population pulsation effects. The dependences of probe signal power, injection bias current and wavelength detuning for the group delays are demonstrated numerically and experimentally. Up to 65 ps group delays and up to 10 GHz modulation frequency can be achieved in the room temperature at the wavelength of 1.3 μ\mum. The most significant feature of our VCSEL device is that the length of active region is only several μ\mum long. Based on the experimental parameters of quantum dot VCSEL structures, we show that the resonance effect of laser cavity plays a significant role to enhance the group delays

    Association between use of non–vitamin k oral anticoagulants with and without concurrent medications and risk of major bleeding in nonvalvular atrial fibrillation

    Get PDF
    Importance:  Non–vitamin K oral anticoagulants (NOACs) are commonly prescribed with other medications that share metabolic pathways that may increase major bleeding risk. Objective:  To assess the association between use of NOACs with and without concurrent medications and risk of major bleeding in patients with nonvalvular atrial fibrillation. Design, Setting, and Participants:  Retrospective cohort study using data from the Taiwan National Health Insurance database and including 91 330 patients with nonvalvular atrial fibrillation who received at least 1 NOAC prescription of dabigatran, rivaroxaban, or apixaban from January 1, 2012, through December 31, 2016, with final follow-up on December 31, 2016. Exposures:  NOAC with or without concurrent use of atorvastatin; digoxin; verapamil; diltiazem; amiodarone; fluconazole; ketoconazole, itraconazole, voriconazole, or posaconazole; cyclosporine; erythromycin or clarithromycin; dronedarone; rifampin; or phenytoin. Main Outcomes and Measures:  Major bleeding, defined as hospitalization or emergency department visit with a primary diagnosis of intracranial hemorrhage or gastrointestinal, urogenital, or other bleeding. Adjusted incidence rate differences between person-quarters (exposure time for each person during each quarter of the calendar year) of NOAC with or without concurrent medications were estimated using Poisson regression and inverse probability of treatment weighting using the propensity score. Results:  Among 91 330 patients with nonvalvular atrial fibrillation (mean age, 74.7 years [SD, 10.8]; men, 55.8%; NOAC exposure: dabigatran, 45 347 patients; rivaroxaban, 54 006 patients; and apixaban, 12 886 patients), 4770 major bleeding events occurred during 447 037 person-quarters with NOAC prescriptions. The most common medications co-prescribed with NOACs over all person-quarters were atorvastatin (27.6%), diltiazem (22.7%), digoxin (22.5%), and amiodarone (21.1%). Concurrent use of amiodarone, fluconazole, rifampin, and phenytoin with NOACs had a significant increase in adjusted incidence rates per 1000 person-years of major bleeding than NOACs alone: 38.09 for NOAC use alone vs 52.04 for amiodarone (difference, 13.94 [99% CI, 9.76-18.13]); 102.77 for NOAC use alone vs 241.92 for fluconazole (difference, 138.46 [99% CI, 80.96-195.97]); 65.66 for NOAC use alone vs 103.14 for rifampin (difference, 36.90 [99% CI, 1.59-72.22); and 56.07 for NOAC use alone vs 108.52 for phenytoin (difference, 52.31 [99% CI, 32.18-72.44]; P < .01 for all comparisons). Compared with NOAC use alone, the adjusted incidence rate for major bleeding was significantly lower for concurrent use of atorvastatin, digoxin, and erythromycin or clarithromycin and was not significantly different for concurrent use of verapamil; diltiazem; cyclosporine; ketoconazole, itraconazole, voriconazole, or posaconazole; and dronedarone. Conclusions and Relevance:  Among patients taking NOACs for nonvalvular atrial fibrillation, concurrent use of amiodarone, fluconazole, rifampin, and phenytoin compared with the use of NOACs alone, was associated with increased risk of major bleeding. Physicians prescribing NOAC medications should consider the potential risks associated with concomitant use of other drugs

    Invited; Developing low-temperature defect passivation technology with supercritical fluid technology

    Get PDF
    Current technology nodes in the process of semiconductor manufacturing have faced many bottlenecks. Therefore, a disruptive-innovative semiconductor processing technology is crucially needed to make a significant breakthrough. Our research team has developed a low temperature (RT~250°C), defect passivation technology based on the supercritical fluid (SCF) technology applied in the nano-scale device processing to overcome the key issues. The SCF technology was originally applied in the field of the extraction and the cleaning of biotechnologies. However, our research team firstly applies this technology in the optoelectronic device. Compared to current high pressure annealing (HPA) and rapid thermal annealing (RTA) methods, the SCF-based defect passivation technology features low temperature, and can be applied for various materials and devices including photoelectric device, advanced nano-device, memory device, and wide bandgap device. Currently, the prototype of the 12” supercritical fluid processing equipment has already been built, and related recipes including nitridation, oxidation, hydrogenation, and sulfurization are also implemented for various devices and applications. In this talk, we will introduce related SCF defect passivation technology and future developments for the SCF applications

    Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus), Prevents Platelet Activation in Human Platelets

    Get PDF
    Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulus L.). Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca2+]i mobilization, thromboxane A2 formation, hydroxyl radical (OH●) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A2 formation, thereby leading to inhibition of [Ca2+]i and finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases

    miRNA arm selection and isomiR distribution in gastric cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small non-protein-coding RNAs. miRNA genes need several biogenesis steps to form function miRNAs. However, the precise mechanism and biology involved in the mature miRNA molecules are not clearly investigated. In this study, we conducted in-depth analyses to examine the arm selection and isomiRs using NGS platform. METHODS: We sequenced small RNAs from one pair of normal and gastric tumor tissues with Solexa platform. By analyzing the NGS data, we quantified the expression profiles of miRNAs and isomiRs in gastric tissues. Then, we measured the expression ratios of 5p arm to 3p arm of the same pre-miRNAs. And, we used Kolmogorov-Smirnov (KS) test to examine isomiR pattern difference between tissues. RESULTS: Our result showed the 5p arm and 3p arm miRNA derived from the same pre-miRNAs have different tissue expression preference, one preferred normal tissue and the other preferred tumor tissue, which strongly implied that there could be other mechanism controlling mature miRNA selection in addition to the known hydrogen-bonding selection rule. Furthermore, by using the KS test, we demonstrated that some isomiR types preferentially occur in normal gastric tissue but other types prefer tumor gastric tissue. CONCLUSIONS: Arm selections and isomiR patterns are significantly varied in human cancers by using deep sequencing NGS data. Our results provided a novel research topic in miRNA regulation study. With advanced bioinformatics and molecular biology studies, more robust conclusions and insight into miRNA regulation can be achieved in the near future

    Genetic analysis of fish iridoviruses isolated in Taiwan during 2001–2009

    Get PDF
    To investigate the genetic relationships between field strains of iridoviruses gathered from various fish species in Taiwan, viruses that were collected from 2001 to 2009 were analyzed. Open reading frames encoding the viral major capsid protein (MCP) and adenosine triphosphatase (ATPase) were sequenced for phylogenetic analysis. Our results indicated that iridoviruses from Taiwan aquaculture fishes could be classified into two groups: prior to 2005, the viruses were closely related to members of the genus Ranavirus; and after 2005, they were similar to members of the genus Megalocytivirus. Based on the analysis of MCP amino acid sequences, virus isolates were divided into 4 major genotypes that were related to ISKNV, RSIV, FLIV, and GIV, respectively. Pairwise comparisons of MCP genes showed that the ranavirus was an epidemic pathogen for economically important species in the major production regions and cultured marine fish, while the megalocytivirus isolates were sensitive to host range. In addition, the distribution of synonymous and non-synonymous changes in the MCP gene revealed that the iridoviruses were evolving slowly, and most of the variations were synonymous mutations. The Ka/Ks values were lower than one, and hence, the viruses were under negative selection

    Predictive Factors for Early Initiation of Artificial Feeding in Patients With Sporadic Creutzfeldt-Jakob Disease

    Get PDF
    Background: Akinetic mutism has often been used as the predictor of sporadic Creutzfeldt-Jacob disease (sCJD) endpoints, but it may be difficult for general physcians to assess. Nasogastric (NG) tube insertion is indicated for many neurodegenerative diseases with a clinical course of swallowing failure, and can be more easily identified than akinetic mutism by general physicians. Therefore, the aim of this study was to identify whether there are predictive factors for early initiation of artificial feeding in patients with sCJD who require enteral nutrition due to swallowing failure.Methods: We retrospectively reviewed the medical records of all patients diagnosed with probable sCJD who were admitted to the neurology ward at a medical center in Taiwan from January 2002 to July 2017. We used Pearson's chi-squared test to detect the correlation of initial symptoms, neurological signs, brain magnetic resonance imaging (MRI), electroencephalography (EEG), and increased levels of 14-3-3 protein in cerebrospinal fluid (CSF) analysis. The Cox proportional hazards model was used to detect prognostic factors for early initiation of NG tube insertion in sCJD patients.Results: The onset age ranged from 51 to 83 years, and mostly ranged from 60 to 79 years. Akinetic mutism was correlated with pyramidal tract signs, myoclonus, and extrapyramidal signs. Furthermore, myoclonus was revealed to be associated with pyramidal tract signs. Multivariate Cox regression analysis showed that myoclonus and elevated CSF levels of 14-3-3 protein are predictive of early NG insertion.Conclusions: Increased levels of 14-3-3 protein in CSF and the presence of myoclonus at diagnosis are predictive of early swallowing difficulty and indicate rapid deterioration in probable sCJD. In addition to akinetic mutism, early initiation of artificial feeding can be used to predict early deterioration in sCJD

    UMARS: Un-MAppable Reads Solution

    Get PDF
    [[abstract]]Background: Un-MAppable Reads Solution (UMARS) is a user-friendly web service focusing on retrieving valuable information from sequence reads that cannot be mapped back to reference genomes. Recently, next-generation sequencing (NGS) technology has emerged as a powerful tool for generating high-throughput sequencing data and has been applied to many kinds of biological research. In a typical analysis, adaptor-trimmed NGS reads were first mapped back to reference sequences, including genomes or transcripts. However, a fraction of NGS reads failed to be mapped back to the reference sequences. Such un-mappable reads are usually imputed to sequencing errors and discarded without further consideration.Methods: We are investigating possible biological relevance and possible sources of un-mappable reads. Therefore, we developed UMARS to scan for virus genomic fragments or exon-exon junctions of novel alternative splicing isoforms from un-mappable reads. For mapping un-mappable reads, we first collected viral genomes and sequences of exon-exon junctions. Then, we constructed UMARS pipeline as an automatic alignment interface.Results: By demonstrating the results of two UMARS alignment cases, we show the applicability of UMARS. We first showed that the expected EBV genomic fragments can be detected by UMARS. Second, we also detected exon-exon junctions from un-mappable reads. Further experimental validation also ensured the authenticity of the UMARS pipeline. The UMARS service is freely available to the academic community and can be accessed via http://musk.ibms.sinica.edu.tw/UMARS/.Conclusions: In this study, we have shown that some un-mappable reads are not caused by sequencing errors. They can originate from viral infection or transcript splicing. Our UMARS pipeline provides another way to examine and recycle the un-mappable reads that are commonly discarded as garbage
    corecore