4,948 research outputs found

    Allometry of Litter Mass in Bats: Maternal Size, Wing Morphology, and Phylogeny

    Get PDF
    We examine how litter mass in bats varies with respect to wing loading, an important aerodynamic aspect of flight. From geometric proportions, litter mass should scale to wing loading by an exponent of three. Conversely, analysis of aerodynamic consequences of carrying extra mass suggests that an exponent significantly less than three would be selectively advantageous. Our results show that Megachiroptera and Microchiroptera differ in the relationship between litter mass and wing loading. Litter mass in megachiropterans scales as expected by geometric proportions, whereas litter mass in microchiropterans, as a group, and for individual families, scales as expected if aerodynamic consequences of flight influence litter mass more than size constraints. Thus, selection pressures on reproductive traits appear to differ between the two suborders of bats

    The immunogenicity of vinyl polymers.

    Full text link

    Sequences of dipole black rings and Kaluza-Klein bubbles

    Full text link
    We construct new exact solutions to 5D Einstein-Maxwell equations describing sequences of Kaluza-Klein bubbles and dipole black rings. The solutions are generated by 2-soliton transformations from vacuum black ring - bubble sequences. The properties of the solutions are investigated. We also derive the Smarr-like relations and the mass and tension first laws in the general case for such configurations of Kaluza-Klein bubbles and dipole black rings. The novel moment is the appearance of the magnetic flux in the Smarr-like relations and the first laws.Comment: 26 pages, 1 figur

    Frustrated magnets in three dimensions: a nonperturbative approach

    Full text link
    Frustrated magnets exhibit unusual critical behaviors: they display scaling laws accompanied by nonuniversal critical exponents. This suggests that these systems generically undergo very weak first order phase transitions. Moreover, the different perturbative approaches used to investigate them are in conflict and fail to correctly reproduce their behavior. Using a nonperturbative approach we explain the mismatch between the different perturbative approaches and account for the nonuniversal scaling observed.Comment: 7 pages, 1 figure. IOP style files included. To appear in Journal of Physics: Condensed Matter. Proceedings of the conference HFM 2003, Grenoble, Franc

    New generalized nonspherical black hole solutions

    Get PDF
    We present numerical evidence for the existence of several types of static black hole solutions with a nonspherical event horizon topology in d≄6d\geq 6 spacetime dimensions. These asymptotically flat configurations are found for a specific metric ansatz and can be viewed as higher dimensional counterparts of the d=5d=5 static black rings, dirings and black Saturn. Similar to that case, they are supported against collapse by conical singularities. The issue of rotating generalizations of these solutions is also considered.Comment: 47 pages, 11 figures, some comments adde

    Correlation inequalities for classical and quantum XY models

    Full text link
    We review correlation inequalities of truncated functions for the classical and quantum XY models. A consequence is that the critical temperature of the XY model is necessarily smaller than that of the Ising model, in both the classical and quantum cases. We also discuss an explicit lower bound on the critical temperature of the quantum XY model.Comment: 13 pages. Submitted to the volume "Advances in Quantum Mechanics: contemporary trends and open problems" of the INdAM-Springer series, proceedings of the INdAM meeting "Contemporary Trends in the Mathematics of Quantum Mechanics" (4-8 July 2016) organised by G. Dell'Antonio and A. Michelangel

    Effective Non-Hermitian Hamiltonians for Studying Resonance Statistics in Open Disordered Systems

    Full text link
    We briefly discuss construction of energy-dependent effective non-hermitian hamiltonians for studying resonances in open disordered systemsComment: Latex, 20 pages, 1 fig. Expanded version of a talk at the Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics IX, June 21-24 2010, Zhejiang University, Hangzhou, China. Accepted for publication in the Internationa Journal of Theoretical Physics (Springer Verlag

    Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory

    Full text link
    We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. These black holes are asymptotically flat, and possess a regular horizon of spherical topology and two equal-magnitude angular momenta associated with two distinct planes of rotation. The action and global charges of the solutions are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory. We discuss the general properties of these black holes and study their dependence on the Gauss-Bonnet coupling constant α\alpha. We argue that most of the properties of the configurations are not affected by the higher derivative terms. For fixed α\alpha the set of black hole solutions terminates at an extremal black hole with a regular horizon, where the Hawking temperature vanishes and the angular momenta attain their extremal values. The domain of existence of regular black hole solutions is studied. The near horizon geometry of the extremal solutions is determined by employing the entropy function formalism.Comment: 25 pages, 7 figure

    New nonuniform black string solutions

    Full text link
    We present nonuniform vacuum black strings in five and six spacetime dimensions. The conserved charges and the action of these solutions are computed by employing a quasilocal formalism. We find qualitative agreement of the physical properties of nonuniform black strings in five and six dimensions. Our results offer further evidence that the black hole and the black string branches merge at a topology changing transition. We generate black string solutions of the Einstein-Maxwell-dilaton theory by using a Harrison transformation. We argue that the basic features of these solutions can be derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method, references added; v3: references added, minor revisions, version accepted by journa

    Localization transition on complex networks via spectral statistics

    Full text link
    The spectral statistics of complex networks are numerically studied. The features of the Anderson metal-insulator transition are found to be similar for a wide range of different networks. A metal-insulator transition as a function of the disorder can be observed for different classes of complex networks for which the average connectivity is small. The critical index of the transition corresponds to the mean field expectation. When the connectivity is higher, the amount of disorder needed to reach a certain degree of localization is proportional to the average connectivity, though a precise transition cannot be identified. The absence of a clear transition at high connectivity is probably due to the very compact structure of the highly connected networks, resulting in a small diameter even for a large number of sites.Comment: 6 pages, expanded introduction and referencess (to appear in PRE
    • 

    corecore