6,769 research outputs found

    LOT: Logic Optimization with Testability - new transformations for logic synthesis

    Get PDF
    A new approach to optimize multilevel logic circuits is introduced. Given a multilevel circuit, the synthesis method optimizes its area while simultaneously enhancing its random pattern testability. The method is based on structural transformations at the gate level. New transformations involving EX-OR gates as well as Reed–Muller expansions have been introduced in the synthesis of multilevel circuits. This method is augmented with transformations that specifically enhance random-pattern testability while reducing the area. Testability enhancement is an integral part of our synthesis methodology. Experimental results show that the proposed methodology not only can achieve lower area than other similar tools, but that it achieves better testability compared to available testability enhancement tools such as tstfx. Specifically for ISCAS-85 benchmark circuits, it was observed that EX-OR gate-based transformations successfully contributed toward generating smaller circuits compared to other state-of-the-art logic optimization tools

    The Formation of Thin Continuous Films from Isolated Nuclei

    Get PDF
    Formation of thin continuous films from isolated nuclei and effect of electron beam, residual gases, and surface conditions on film growt

    D=5 Einstein-Maxwell-Chern-Simons Black Holes

    Full text link
    5-dimensional Einstein-Maxwell-Chern-Simons theory with Chern-Simons coefficient λ=1\lambda=1 has supersymmetric black holes with vanishing horizon angular velocity, but finite angular momentum. Here supersymmetry is associated with a borderline between stability and instability, since for λ>1\lambda>1 a rotational instability arises, where counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. For λ>2\lambda>2 black holes are no longer uniquely characterized by their global charges, and rotating black holes with vanishing angular momentum appear.Comment: 4 pages, 4 figures, RevTeX styl

    Pairing of 1-hexyl-3-methylimidazolium and tetrafluoroborate ions in n-pentanol

    Full text link
    Molecular dynamics simulations are obtained and analyzed to study pairing of 1-hexyl-3-methylimidazolium and tetrafluoroborate ions in n-pentanol, in particular by evaluating the potential-of-mean-force between counter ions. The present molecular model and simulation accurately predicts the dissociation constant Kd in comparison to experiment, and thus the behavior and magnitudes for the ion-pair pmf at molecular distances, even though the dielectric constant of the simulated solvent differs from the experimental value by about 30%. A naive dielectric model does not capture molecule structural effects such as multiple conformations and binding geometries of the Hmim+ and BF4- ion-pairs. Mobilities identify multiple time-scale effects in the autocorrelation of the random forces on the ions, and specifically a slow, exponential time-decay of those long-ranged forces associated here with dielectric friction effects.Comment: 5 pages, 7 figures. V2: Figs. 4 & 7 redrawn for better visual clarity with log-scales. No change in results. In press J. Chem. Phys. 201

    Density distribution and size sorting in fish schools: an individual-based model

    Get PDF
    In fish schools the density varies per location and often individuals are sorted according to familiarity and/or body size. High density is considered advantageous for protection against predators and this sorting is believed to be advantageous not only to avoid predators but also for finding food. In this paper, we list a number of mechanisms and we study, with the help of an individual-based model of schooling agents, which spatial patterns may result from them. In our model, schooling is regulated by the following rules: avoiding those that are close by, aligning to those at intermediate distances, and moving towards others further off. Regarding kinship/familiarity, we study patterns that come about when agents actively choose to be close to related agents (i.e., ‘active sorting'). Regarding body size, we study what happens when agents merely differ in size but behave according to the usual schooling rules (‘size difference model'), when agents choose to be close to those of similar size, and when small agents avoid larger ones (‘risk avoidance'). Several spatial configurations result: during ‘active sorting' familiar agents group together anywhere in the shoal, but agents of different size group concentrically, whereby the small agents occupy the center and the large ones the periphery (‘size difference model' and ‘active sorting'). If small agents avoid the risk of being close to large ones, however, small agents end up at the periphery and large ones occupy the center (‘risk avoidance'). Spatial configurations are also influenced by the composition of the group, namely the percentage of agents of each type. Furthermore, schools are usually oblong and their density is always greatest near the front. We explain the way in which these patterns emerge and indicate how results of our model may guide the study of spatial patterns in real animal

    Simulations of the social organization of large schools of fish whose perception is obstructed

    Get PDF
    Individual-based models have shown that simple interactions among moving individuals (repulsion, attraction and alignment) result in travelling schools that resemble those of real fish. In most models individuals interact with all neighbours within sensory range which usually includes almost all the individuals of the school. Thus, it implies (almost) global perception. However, in reality in large groups, individuals will only interact with their neighbours close by, because they cannot perceive those farther away, since they are masked by closer ones. Here, we have developed a new model to investigate how such obstruction of perception influences aspects of social organization in schools of up to 10,000 individuals. We will show that in small schools of up to approximately 30 individuals group shape and density resembles that obtained with global perception, because in small schools hardly anyone is masked by others: school shape is oblong and the density is highest in the frontal half of the school. With increasing group size, from approximately 200 individuals onwards, internal density becomes variable over time, regions of high and low density develop at any location within a school, and group shape becomes more complex, in the sense that inward bounds and appendages occur more frequently. The complexity of shape and internal structure arises because, due to their limited perception, individuals interact relatively more locally in larger schools. In case of global perception, however, shape remains elliptical for all group sizes and in groups above 1000 individuals, the schools become unrealistically dense. In sum, our results show that obstructed perception in itself suffices to generate a realistic organization of large schools and that no extra rules for 'coping' with many individuals are needed. (C) 2012 Elsevier B.V. All rights reserved

    On Axially Symmetric Solutions in the Electroweak Theory

    Full text link
    We present the general ansatz, the energy density and the Chern-Simons charge for static axially symmetric configurations in the bosonic sector of the electroweak theory. Containing the sphaleron, the multisphalerons and the sphaleron-antisphaleron pair at finite mixing angle, the ansatz further allows the construction of the sphaleron and multisphaleron barriers and of the bisphalerons at finite mixing angle. We conjecture that further solutions exist.Comment: 17 pages, latex, THU-94/0

    Orbits in the Field of a Gravitating Magnetic Monopole

    Full text link
    Orbits of test particles and light rays are an important tool to study the properties of space-time metrics. Here we systematically study the properties of the gravitational field of a globally regular magnetic monopole in terms of the geodesics of test particles and light. The gravitational field depends on two dimensionless parameters, defined as ratios of the characteristic mass scales present. For critical values of these parameters the resulting metric coefficients develop a singular behavior, which has profound influence on the properties of the resulting space-time and which is clearly reflected in the orbits of the test particles and light rays.Comment: 24 pages, 15 figures. Accepted for publication in GR
    corecore