8 research outputs found

    Asymmetric Scattering and Reciprocity in a Plasmonic Dimer

    Get PDF
    We study the scattering of polarized light by two equal corner stacked Au nanorods that exhibit strong electromagnetic coupling. In the far field, this plasmonic dimer manifests very prominent asymmetric scattering in the transverse direction. Calculations based on a system of two coupled oscillators, as well as simulations based on the boundary element method, show that, while in one configuration both vertical and horizontal polarization states are scattered to the detector, when we interchange the source and the detector, the scattered intensity of the horizontal polarization drops to zero. Following Perrin's criterion, it can be shown that this system, as well as any other linear system not involving magneto-optical effects, obeys the optical reciprocity principle. We show that the optical response of the plasmonic dimer, while preserving electromagnetic reciprocity, can be used for the non-reciprocal transfer of signals at a subwavelength scale

    Light scattering by coupled oriented dipoles: decomposition of the scattering matrix

    Get PDF
    We study the optical response of two coupled oriented dipoles with the dimer axis perpendicular to the wave vector of light by analyzing how their scattering matrix can be decomposed. The scattering matrix can be written as a linear combination of three terms with a clear physical meaning: one for each particle and another that is responsible for the coupling and that vanishes for noninteracting or distant particles. We show that the interaction term may generate optical activity for certain scattering directions and that this effect manifests itself mostly in the near field. This simple and intuitive theory based on matrix and vector states of oriented dipoles also describes hybridization processes and Fano resonances. The decomposition method can be also formulated in terms of a hybrid basis that allows us to quantitatively determine the individual contribution of the in-phase and out-of-phase coupling modes to the overall intensity. Our method can help to understand the optical response of more complex nanostructures that can be decomposed into dipole terms. The results are illustrated in gold nanoantenna dimers which exhibit a strong dipolar resonanc

    Anisotropic integral decomposition of depolarizing Mueller matrices

    Get PDF
    We propose a novel, computationally efficient integral decomposition of depolarizing Mueller matrices allowing for the obtainment of a nondepolarizing estimate, as well as for the determination of the elementary polarization properties, in terms of mean values and variancescovariances of their fluctuations, of a weakly anisotropic depolarizing medium. We illustrate the decomposition on experimental examples and compare its performance to those of alternative decomposition

    Anisotropic integral decomposition of depolarizing Mueller matrices

    No full text
    We propose a novel, computationally efficient integral decomposition of depolarizing Mueller matrices allowing for the obtainment of a nondepolarizing estimate, as well as for the determination of the elementary polarization properties, in terms of mean values and variancescovariances of their fluctuations, of a weakly anisotropic depolarizing medium. We illustrate the decomposition on experimental examples and compare its performance to those of alternative decomposition
    corecore