204 research outputs found

    Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders

    Get PDF
    Nuclear factor κB (NF-κB) is a transcription factor that regulates various aspects of immune response, cell death, and differentiation as well as cancer. In this study we introduce the Py-Im polyamide 1 that binds preferentially to the sequences 5′-WGGWWW-3′ and 5′GGGWWW-3′. The compound is capable of binding to κB sites and reducing the expression of various NF-κB–driven genes including IL6 and IL8 by qRT-PCR. Chromatin immunoprecipitation experiments demonstrate a reduction of p65 occupancy within the proximal promoters of those genes. Genome-wide expression analysis by RNA-seq compares the DNA-binding polyamide with the well-characterized NF-κB inhibitor PS1145, identifies overlaps and differences in affected gene groups, and shows that both affect comparable numbers of TNF-α–inducible genes. Inhibition of NF-κB DNA binding via direct displacement of the transcription factor is a potential alternative to the existing antagonists

    Pneumocystis cell wall β-glucan stimulates calcium-dependent signaling of IL-8 secretion by human airway epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory failure secondary to alveolar inflammation during <it>Pneumocystis </it>pneumonia is a major cause of death in immunocompromised patients. Neutrophil infiltration in the lung of patients with <it>Pneumocystis </it>infection predicts severity of the infection and death. Several previous studies indicate that airway epithelial cells release the neutrophil chemoattractant proteins, MIP-2 (rodents) and IL-8 (humans), in response to <it>Pneumocystis </it>and purified <it>Pneumocystis </it>cell wall β-glucans (PCBG) through the NF-κB-dependent pathway. However, little is known about the molecular mechanisms that are involved in the activation of airway epithelium cells by PCBG resulting in the secretion of IL-8.</p> <p>Method</p> <p>To address this, we have studied the activation of different calcium-dependent mitogen-activated protein kinases (MAPKs) in 1HAEo<sup>- </sup>cells, a human airway epithelial cell line.</p> <p>Results</p> <p>Our data provide evidence that PCBG induces phosphorylation of the MAPKs, ERK, and p38, the activation of NF-κB and the subsequently secretion of IL-8 in a calcium-dependent manner. Further, we evaluated the role of glycosphingolipids as possible receptors for β-glucans in human airway epithelial cells. Preincubation of the cells with D-<it>threo</it>-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) a potent inhibitor of the glycosphingolipids synthesis, prior to PCBG stimulation, significantly decreased IL-8 production.</p> <p>Conclusion</p> <p>These data indicate that PCBG activates calcium dependent MAPK signaling resulting in the release of IL-8 in a process that requires glycosphingolipid for optimal signaling.</p

    Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins

    Get PDF
    Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5 is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to identify selective degradation of the signalling scaffold TRAF3. TRAF3 autophagy is driven by RAS and results in activation of the NF-κB family member RELB. We show that RELB represses TGFβ target promoters independently of DNA binding at NF-κB recognition sequences, instead binding with SMAD family member(s) at SMAD-response elements. Thus, autophagy antagonises TGFβ gene expression. Finally, autophagy-deficient A549 cells regain tumorigenicity upon SMAD4 knockdown. Thus, at least in this setting, a physiologic function for autophagic regulation of gene expression is tumour growth

    Human Population Differentiation Is Strongly Correlated with Local Recombination Rate

    Get PDF
    Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and FST has a qualitatively different relationship for FST between African and non-African populations and for FST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history

    Inflammasome-Mediated IL-1β Production in Humans with Cystic Fibrosis

    Get PDF
    Inflammation and infection are major determinants of disease severity and consequently, the quality of life and outcome for patients with cystic fibrosis (CF). Interleukin-1 beta (IL-1β) is a key inflammatory mediator. Secretion of biologically active IL-1β involves inflammasome-mediated processing. Little is known about the contribution of IL-1β and the inflammasomes in CF inflammatory disease. This study examines inflammasome-mediated IL-1β production in CF bronchial epithelial cell lines and human patients with CF.Bronchial epithelial cell lines were found to produce negligible amounts of basal or stimulated IL-1β compared to hematopoeitic cells and they did not significantly upregulate caspase-1 activity upon inflammasome stimulation. In contrast, peripheral blood mononuclear cells (PBMCs) from both CF and healthy control subjects produced large amounts of IL-1β and strongly upregulated caspase-1 activity upon inflammasome stimulation. PBMCs from CF patients and controls displayed similar levels of caspase-1 activation and IL-1β production when stimulated with inflammasome activators. This IL-1β production was dependent on NF-κB activity and could be enhanced by priming with LPS. Finally, chemical inhibition of CFTR activity in control PBMCs and THP-1 cells did not significantly alter IL-1β or IL-8 production in response to P. aeruginosa.Hematopoeitic cells appear to be the predominant source of inflammasome-induced pro-inflammatory IL-1β in CF. PBMCs derived from CF subjects display preserved inflammasome activation and IL-1β secretion in response to the major CF pathogen Pseudomonas aeruginosa. However, our data do not support the hypothesis that increased IL-1β production in CF subjects is due to an intrinsic increase in NF-κB activity through loss of CFTR function

    Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function

    Get PDF
    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-κB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-κB and Sp1 to bind to their binding sites. Knock-down of either NF-κB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-κB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    • …
    corecore