417 research outputs found

    The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-B\'enard convection

    Get PDF
    When the classical Rayleigh-B\'enard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at Ra108109Ra \sim 10^8-10^9 (Pr=46Pr=4-6) and 01/Ro250 \lesssim 1/Ro \lesssim 25 we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It turns out that the vertical wall temperature gradient in regimes II and III has a different origin than that observed in regime I. It is caused by boundary layer dynamics characteristic for rotating flows, which drives a secondary flow that transports hot fluid up the sidewall in the lower part of the container and cold fluid downwards along the sidewall in the top part.Comment: 21 pages, 12 figure

    Saturation of front propagation in a reaction-diffusion process describing plasma damage in porous low-k materials

    Get PDF
    We propose a three-component reaction-diffusion system yielding an asymptotic logarithmic time-dependence for a moving interface. This is naturally related to a Stefan-problem for which both one-sided Dirichlet-type and von Neumann-type boundary conditions are considered. We integrate the dependence of the interface motion on diffusion and reaction parameters and we observe a change from transport behavior and interface motion \sim t^1/2 to logarithmic behavior \sim ln t as a function of time. We apply our theoretical findings to the propagation of carbon depletion in porous dielectrics exposed to a low temperature plasma. This diffusion saturation is reached after about 1 minute in typical experimental situations of plasma damage in microelectronic fabrication. We predict the general dependencies on porosity and reaction rates.Comment: Accepted for publication in Phys. Rev.

    Optimal Prandtl number for heat transfer in rotating Rayleigh-Benard convection

    Get PDF
    Numerical data for the heat transfer as a function of the Prandtl (Pr) and Rossby (Ro) numbers in turbulent rotating Rayleigh-Benard convection are presented for Rayleigh number Ra = 10^8. When Ro is fixed the heat transfer enhancement with respect to the non-rotating value shows a maximum as function of Pr. This maximum is due to the reduced efficiency of Ekman pumping when Pr becomes too small or too large. When Pr becomes small, i.e. for large thermal diffusivity, the heat that is carried by the vertical vortices spreads out in the middle of the cell, and Ekman pumping thus becomes less efficient. For higher Pr the thermal boundary layers (BLs) are thinner than the kinetic BLs and therefore the Ekman vortices do not reach the thermal BL. This means that the fluid that is sucked into the vertical vortices is colder than for lower Pr which limits the efficiency of the upwards heat transfer.Comment: 5 pages, 6 figure

    Improving housing outcomes for young people leaving state out of home care

    Get PDF

    Le développement de l’identité : un processus relationnel et dynamique

    Get PDF
    Cet article présente l’application du modèle relationnel des systèmes dynamiques au développement de l’identité que nous définissons en termes d’engagements. Au départ, nous considérons que les engagements ne sont pas une caractéristique interne à l’individu, mais qu’ils sont des construits relationnels. Nous décrivons le processus développemental comme une longue série d’interactions entre la personne et le contexte, et nous proposons un modèle qui rend compte de ces interactions. Des différences dans l’individu et dans le contexte, et spécialement leur combinaison spécifique, déterminent le développement de l’identité à long terme. Ce modèle a des implications pour la théorie, la recherche et les interventions : il appelle une approche centrée sur les émotions, les interactions et les trajectoires individuelles, plutôt que sur des caractéristiques internes statiques.In this paper we present a relational dynamic systems model of commitment development. Firstly, we argue that commitments are not an internal characteristic of individuals, but that they are relational constructs. Secondly, we describe the developmental process as a long series of interactions between the person and the context, and present a model which describes an interaction. Differences in individual and context, and especially their specific combination, determine the long term development of identity. This model has theoretical, research and intervention implications: it calls for an approach that focuses on emotions, interactions and individual trajectories, instead of on static internal characteristics

    The Landscape of Identity Model:An Integration of Qualitative and Quantitative Aspects of Identity Development

    Get PDF
    The landscape of identity model views identity as a constellation of commitments with different levels of strength and integration, showing how this constellation emerges from everyday life experiences. Drawing on key principles from the complex dynamic systems approach, our model further describes this conceptualization, as well as the mechanisms underlying the development of an identity landscape. We show that the model solves current conceptual issues within identity theory, specifies how Marcia’s four identity statuses can be viewed as particular types of identity landscapes, and helps to further develop the identity field by generating predictions regarding how individuals with different types of identity landscapes would respond to major life events

    A simulation model shows how individual differences affect major life decisions

    Get PDF
    Individuals are faced with a number of major decisions throughout their lives, including the choice of a suitable education, career, and life partner. Making such ‘major life decisions’ is challenging, as is evidenced by substantial rates of divorce and drop-out from higher education. Although poor major life decisions can lead to considerable costs for both individuals and society, little is known about how people make these decisions. This is because major life decisions are not simple short-term weighings of options – they are strongly intertwined with identity development. Here, we present a simulation model of major life decisions that integrates the short-term perspective of decision science with the long-term perspective of identity theory. We model major life decisions as a process comprising many explorations of available options, resulting in changing commitments, and eventually leading to a decision. Using our model, we run a large-scale in silico experiment, systematically simulating how three key individual characteristics affect the choice process and the quality of the decision: (1) exploration tendency (broad vs in-depth), (2) accuracy in assessing how well options fit, and (3) selectiveness. We identify the types of individuals who are at risk of exhibiting ‘maladaptive’ decision dynamics, including ruminative exploration and rash decision making, and conclude that these features often, but not always, lead to bad decisions. Our simulation results generate concrete predictions that can be empirically tested and may eventually result in individually tailored tools to aid individuals in making major life decisions

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure
    corecore