15 research outputs found

    A Heuristic Framework for Next-Generation Models of Geostrophic Convective Turbulence

    Get PDF
    Many geophysical and astrophysical phenomena are driven by turbulent fluid dynamics, containing behaviors separated by tens of orders of magnitude in scale. While direct simulations have made large strides toward understanding geophysical systems, such models still inhabit modest ranges of the governing parameters that are difficult to extrapolate to planetary settings. The canonical problem of rotating Rayleigh-B\'enard convection provides an alternate approach - isolating the fundamental physics in a reduced setting. Theoretical studies and asymptotically-reduced simulations in rotating convection have unveiled a variety of flow behaviors likely relevant to natural systems, but still inaccessible to direct simulation. In lieu of this, several new large-scale rotating convection devices have been designed to characterize such behaviors. It is essential to predict how this potential influx of new data will mesh with existing results. Surprisingly, a coherent framework of predictions for extreme rotating convection has not yet been elucidated. In this study, we combine asymptotic predictions, laboratory and numerical results, and experimental constraints to build a heuristic framework for cross-comparison between a broad range of rotating convection studies. We categorize the diverse field of existing predictions in the context of asymptotic flow regimes. We then consider the physical constraints that determine the points of intersection between flow behavior predictions and experimental accessibility. Applying this framework to several upcoming devices demonstrates that laboratory studies may soon be able to characterize geophysically-relevant flow regimes. These new data may transform our understanding of geophysical and astrophysical turbulence, and the conceptual framework developed herein should provide the theoretical infrastructure needed for meaningful discussion of these results.Comment: 36 pages, 8 figures. CHANGES: in revision at Geophysical and Astrophysical Fluid Dynamic

    Geostrophic convective turbulence: The effect of boundary layers

    Get PDF
    Rayleigh--B\'enard (RB) convection, the flow in a fluid layer heated from below and cooled from above, is used to analyze the transition to the geostrophic regime of thermal convection. In the geostrophic regime, which is of direct relevance to most geo- and astrophysical flows, the system is strongly rotated while maintaining a sufficiently large thermal driving to generate turbulence. We directly simulate the Navier--Stokes equations for two values of the thermal forcing, i.e. Ra=1010Ra=10^{10} and Ra=5⋅1010Ra=5\cdot10^{10}, a constant Prandtl number~Pr=1Pr=1, and vary the Ekman number in the range Ek=1.3⋅10−7Ek=1.3\cdot10^{-7} to Ek=2⋅10−6Ek=2\cdot10^{-6} which satisfies both requirements of super-criticality and strong rotation. We focus on the differences between the application of no-slip vs. stress-free boundary conditions on the horizontal plates. The transition is found at roughly the same parameter values for both boundary conditions, i.e. at~Ek≈9×10−7Ek\approx 9\times 10^{-7} for~Ra=1×1010Ra=1\times 10^{10} and at~Ek≈3×10−7Ek\approx 3\times 10^{-7} for~Ra=5×1010Ra=5\times 10^{10}. However, the transition is gradual and it does not exactly coincide in~EkEk for different flow indicators. In particular, we report the characteristics of the transitions in the heat transfer scaling laws, the boundary-layer thicknesses, the bulk/boundary-layer distribution of dissipations and the mean temperature gradient in the bulk. The flow phenomenology in the geostrophic regime evolves differently for no-slip and stress-free plates. For stress-free conditions the formation of a large-scale barotropic vortex with associated inverse energy cascade is apparent. For no-slip plates, a turbulent state without large-scale coherent structures is found; the absence of large-scale structure formation is reflected in the energy transfer in the sense that the inverse cascade, present for stress-free boundary conditions, vanishes.Comment: Submitted to JF

    Laboratory Exploration of Heat Transfer Regimes in Rapidly Rotating Turbulent Convection

    Get PDF
    We report heat transfer and temperature profile measurements in laboratory experiments of rapidly rotating convection in water under intense thermal forcing (Rayleigh number RaRa as high as ∼1013\sim 10^{13}) and unprecedentedly strong rotational influence (Ekman numbers EE as low as 10−810^{-8}). Measurements of the mid-height vertical temperature gradient connect quantitatively to predictions from numerical models of asymptotically rapidly rotating convection, separating various flow phenomenologies. Past the limit of validity of the asymptotically-reduced models, we find novel behaviors in a regime we refer to as rotationally-influenced turbulence, where rotation is important but not as dominant as in the known geostrophic turbulence regime. The temperature gradients collapse to a Rayleigh-number scaling as Ra−0.2Ra^{-0.2} in this new regime. It is bounded from above by a critical convective Rossby number Ro∗=0.06Ro^*=0.06 independent of domain aspect ratio Γ\Gamma, clearly distinguishing it from well-studied rotation-affected convection.Comment: 14 pages, 7 figure

    The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-B\'enard convection

    Get PDF
    When the classical Rayleigh-B\'enard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at Ra∼108−109Ra \sim 10^8-10^9 (Pr=4−6Pr=4-6) and 0≲1/Ro≲250 \lesssim 1/Ro \lesssim 25 we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It turns out that the vertical wall temperature gradient in regimes II and III has a different origin than that observed in regime I. It is caused by boundary layer dynamics characteristic for rotating flows, which drives a secondary flow that transports hot fluid up the sidewall in the lower part of the container and cold fluid downwards along the sidewall in the top part.Comment: 21 pages, 12 figure

    Discontinuous Transitions Towards Vortex Condensates in Buoyancy-Driven Rotating Turbulence: Analogies with First-Order Phase Transitions

    Get PDF
    Using direct numerical simulations of rotating Rayleigh-B\'enard convection, we explore the transitions between turbulent states from a 3D flow state towards a quasi-2D condensate known as the large-scale vortex (LSV). We vary the Rayleigh number RaRa as control parameter and study the system response (strength of the LSV) in terms of order parameters assessing the energetic content in the flow and the upscale energy flux. By sensitively probing the boundaries of the domain of existence of the LSV, we find discontinuous transitions and we identify the presence of a hysteresis loop as well as nucleation & growth type of dynamics, manifesting a remarkable correspondence with first-order phase transitions in equilibrium statistical mechanics. We show furthermore that the creation of the condensate state coincides with a discontinuous transition of the energy transport into the largest mode of the system.Comment: 10 pages, 5 figure

    The robust wall modes and their interplay with bulk turbulence in confined rotating Rayleigh-B\'enard convection

    Get PDF
    In confined rotating convection, a strong zonal flow can develop close to the side wall with a modal structure that precesses anti-cyclonically (counter to the applied rotation) along the side wall. It is surmised that this is a robust non-linear evolution of the wall modes observed before the onset of bulk convection. Here, we perform direct numerical simulations of cylindrically confined rotating convection at high rotation rates and strong turbulent forcing. Through comparison with earlier work, we find a fit-parameter-free relation that links the angular drift frequency of the robust wall mode observed far into the turbulent regime with the critical wall mode frequency at onset, firmly substantiating the connection between the observed boundary zonal flow and the wall modes. Deviations from this relation at stronger turbulent forcing suggest early signs of the bulk turbulence starting to hamper the development of the wall mode. Furthermore, by studying the interactive flow between the robust wall mode and the bulk turbulence, we identify radial jets penetrating from the wall mode into the bulk. These jets induce a large scale multipolar vortex structure in the bulk turbulence, dependent on the wavenumber of the wall mode. In a narrow cylinder the entire bulk flow is dominated by a quadrupolar vortex driven by the radial jets, while in a wider cylinder the jets are found to have a finite penetration length and the vortices do not cover the entire bulk. We also identify the role of Reynolds stresses in the generation of zonal flows in the region near the sidewall.Comment: 14 pages, 8 figure

    Frictional boundary layer effect on vortex condensation in rotating turbulent convection

    Get PDF
    We perform direct numerical simulations of rotating Rayleigh--B\'enard convection of fluids with low (Pr=0.1Pr=0.1) and high (Pr=5Pr=5) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demonstrate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.Comment: 12 pages, 4 figure

    Vortex plume distribution in confined turbulent rotating convection

    Get PDF
    Vortical columns are key features of rapidly rotating turbulent Rayleigh-Bénard convection. In this work we probe the structure of the sidewall boundary layers experimentally and show how they affect the spatial vortex distribution in a cylindrical cell. The cell has a diameter-to-height aspect ratio 1/21/2 and is operated at Rayleigh number 5.9×1095.9\times 10^9 and Prandtl number 6.4. The vortices are detected using particle image velocimetry. We find that for inverse Rossby numbers 1/Ro≳31/Ro\gtrsim 3 (expressing the rotation rate in a dimensionless form) the sidewall boundary layer exhibits a rotation-dependent thickness and a characteristic radial profile in the root-mean-square azimuthal velocity with two peaks rather than a single peak typical for the non-rotating case. These properties point to Stewartson-type boundary layers, which can actually cover most of the domain for rotation rates just above the transition point. A zonal ordering of vortices into two azimuthal bands at moderate rotation rates 3≲1/Ro≲73\lesssim 1/Ro \lesssim 7 can be attributed to the sidewall boundary layer. Additionally, we present experimental confirmation of the tendency of like-signed vortices to cluster on opposite sides of the cylinder for 1≲1/Ro≲51\lesssim 1/Ro \lesssim 5 . At higher rotation rates and away from the sidewall the vortices are nearly uniformly distributed
    corecore