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Rotating Rayleigh—-Bénard convection, the flow in a rotating fluid layer heated from
below and cooled from above, is used to analyse the transition to the geostrophic
regime of thermal convection. In the geostrophic regime, which is of direct relevance
to most geo- and astrophysical flows, the system is strongly rotating while maintaining
a sufficiently large thermal driving to generate turbulence. We directly simulate the
Navier-Stokes equations for two values of the thermal forcing, i.e. Ra = 10'° and
Ra =5 x 10'°, at constant Prandtl number Pr = 1, and vary the Ekman number
in the range Ek = 1.3 x 1077 to Ek =2 x 107%, which satisfies both requirements
of supercriticality and strong rotation. We focus on the differences between the
application of no-slip versus stress-free boundary conditions on the horizontal plates.
The transition is found at roughly the same parameter values for both boundary
conditions, i.e. at Ek ~ 9 x 1077 for Ra = 1 x 10'° and at Ek ~ 3 x 1077 for
Ra =5 x 10'°, However, the transition is gradual and it does not exactly coincide
in Ek for different flow indicators. In particular, we report the characteristics of
the transitions in the heat-transfer scaling laws, the boundary-layer thicknesses, the
bulk/boundary-layer distribution of dissipations and the mean temperature gradient in
the bulk. The flow phenomenology in the geostrophic regime evolves differently for
no-slip and stress-free plates. For stress-free conditions, the formation of a large-scale
barotropic vortex with associated inverse energy cascade is apparent. For no-slip
plates, a turbulent state without large-scale coherent structures is found; the absence
of large-scale structure formation is reflected in the energy transfer in the sense that
the inverse cascade, present for stress-free boundary conditions, vanishes.
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1. Introduction

Natural convection is ubiquitous in Nature. It is found not only in the Earth’s
interior and oceans, but also in planetary atmospheres and inside stars (Marshall &
Schott 1999; Miesch 2000; Roberts & Glatzmaier 2000; Heimpel, Aurnou & Wicht
2005). In all of those flows, the background rotation induces a Coriolis force, which
significantly affects the system, changing not only the flow phenomenology but in
many cases also the heat transport and the amount of mixing of different species.

Rotating Rayleigh—Bénard (RB) convection, the flow between two rotating parallel
plates heated from below and cooled from above, is commonly used as a model for
studying rotating thermal convection. Rotating an RB system induces many changes.
First, as found experimentally by Nakagawa & Frenzen (1955) and demonstrated
using linear stability analysis by Chandrasekhar (1961), convective instability sets in
at increasingly higher temperature differences when rotation is applied, or, in other
words, the critical value of the Rayleigh number (the non-dimensionless temperature
difference between the plates) rises as a function of the non-dimensional rotation
rate, i.e. the inverse Ekman number. In experiments (Rossby 1969; Zhong, Ecke &
Steinberg 1993; Liu & Ecke 1997, 2009; King et al. 2009; Zhong et al. 2009; Weiss
et al. 2010; Zhong & Ahlers 2010; Kunnen et al. 2011; Weiss & Ahlers 2011a,b;
Ecke & Niemela 2014; Stellmach er al. 2014; Cheng et al. 2015) and numerical
simulations (Kunnen, Clercx & Geurts 2006, 2008a; King et al. 2009; Zhong et al.
2009; Schmitz & Tilgner 2009, 2010; Stevens, Clercx & Lohse 2010; Weiss et al.
2010; Horn & Shishkina 2014; Stellmach et al. 2014; Cheng et al. 2015), when
considering the dependence on rotation of the convective heat flux through the fluid
layer, one can typically distinguish different regimes: (i) rotation is too weak to
significantly alter the heat flux (‘rotation-unaffected’); (ii) rotation plays a role, and
depending on the Prandtl number of the fluid, the heat flux may rise or fall with
increasing rotation (‘rotation-affected’); and (iii) rotation is dominant, the principal
force balance is the geostrophic balance (Greenspan 1968), and the heat transfer is
rapidly reduced as rotation increases (‘rotation-dominated’ or geostrophic regime).
Based on estimates of the governing parameters for geophysical and astrophysical
flow settings, these flows are expected to fall in the geostrophic regime of convection.
By studying this regime, we aim to extend understanding of the aforementioned
large-scale flows.

King et al. (2009) performed the first comprehensive investigation into the transition
between the rotation-affected and rotation-dominated (geostrophic) regimes. They
argued, based on a large dataset of experimental and numerical results, that the
transition happens when the kinetic boundary layer (of Ekman type; Greenspan 1968)
becomes smaller than the thermal boundary layer. Using numerical simulations with
stress-free plates instead of the usual no-slip walls, they actually found a similar
transition in the local scaling laws, however with different prefactors (King et al.
2009, supplement). This transition was later confirmed by the simulations of Schmitz
& Tilgner (2009, 2010).

Julien and coworkers took a different approach in order to be sure to study
the geostrophic regime. In a series of articles (Sprague et al. 2006; Julien et al.
2012a,b; Rubio et al. 2014), they derived a set of reduced equations representative
of the limit of strong rotation (i.e. vanishing Rossby number) and described many
properties of geostrophic convection. In particular, they identified different flow
states. Just above onset, convection sets in with a cellular structure (also see e.g.
Nakagawa & Frenzen 1955; Chandrasekhar 1961). Once the thermal forcing is
increased, the flow becomes organised into columnar vortices covering the entire
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vertical extent of the domain, which are also referred to as convective Taylor columns
(Sakai 1997; Sprague et al. 2006; Portegies et al. 2008; King et al. 2009; Grooms
et al. 2010; Kunnen, Clercx & Geurts 2010a; King & Aurnou 2012). A remarkable
characteristic feature of these structures is the sleeve of oppositely signed vorticity
surrounding the vortical core. At even higher thermal forcing, the columns lose
their vertical coherence. Instead, swirling plumes erupt vertically from the bottom
and top boundary layers and do not cross the fluid layer entirely (Rossby 1969;
Zhong et al. 1993; Julien et al. 1996; Kunnen et al. 2006; King et al. 2009; Zhong
et al. 2009; Kunnen et al. 2010a). At the strongest thermal forcing, another state
was observed, coined ‘geostrophic turbulence’, in which vertical coherence has
vanished completely and a fluctuating field remains. Note that these four different
flow states are all part of the rotation-dominated geostrophic regime. These flow
structures have been reproduced in direct numerical simulations (DNS) of the full
Navier-Stokes equations (Stellmach et al. 2014) and laboratory visualisations (Cheng
et al. 2015). An intriguing feature of the geostrophic-turbulence state is the formation
of an inverse energy cascade (Rubio et al. 2014). In an inverse cascade, unlike the
regular cascade of three-dimensional (3D) homogeneous isotropic turbulence, energy
flows from the small length scales to larger ones. This leads to the formation of
large-scale structures (the depth-independent barotropic mode (Rubio et al. 2014))
that typically become comparable in size to the domain in which they reside. Such
self-organisation and the inverse cascade have also been reported in recent DNS
employing stress-free boundaries (Favier, Silvers & Proctor 2014; Guervilly, Hughes
& Jones 2014; Stellmach et al. 2014).

The difficulty of achieving the geostrophic regime is twofold. Both a high rotation
rate and a significant level of thermal driving, to remain turbulent even with respect
to the increased critical Rayleigh number, are needed to achieve the geostrophic
regime. Most earlier experimental and numerical studies of rotating RB flow (Rossby
1969; Zhong et al. 1993; Julien et al. 1996; Liu & Ecke 1997; Vorobieff & Ecke
2002; Kunnen et al. 2008a; Kunnen, Clercx & Geurts 2008b; King et al. 2009; Liu
& Ecke 2009; Zhong et al. 2009; Schmitz & Tilgner 2009, 2010; Kunnen, Geurts &
Clercx 2010b; Stevens et al. 2010; Weiss et al. 2010; Zhong & Ahlers 2010; Kunnen
et al. 2011; Liu & Ecke 2011; Weiss & Ahlers 2011a,b; Stevens, Clercx & Lohse
2012; Kunnen, Corre & Clercx 2013; Horn & Shishkina 2014) — and see Stevens,
Clercx & Lohse (2013a) for a recent review — have not conclusively ventured deep
into the geostrophic regime, so that any scaling ranges in the geostrophic regime
are rather narrow. Recent experiments (Ecke & Niemela 2014; Cheng et al. 2015)
and DNS (Stellmach et al. 2014), capable of simultaneously achieving very high
Rayleigh numbers Ra = 10° and very low Ekman numbers Ek < 107%, have found the
transitions in the scaling laws for the heat transfer reported previously over a wider
parameter range and could achieve wider scaling ranges in the geostrophic regime.

The geostrophic regime is a natural extension of the weakly nonlinear theories
developed for rotating convection near onset (Veronis 1968; Clune & Knobloch
1993; Bassom & Zhang 1994; Dawes 2001; Ecke 2015). A remarkable prediction of
the theory is that, for strong enough rotation, the flow becomes independent of the
boundary conditions (no-slip or stress-free; Niiler & Bisshopp 1965; Heard & Veronis
1971; Clune & Knobloch 1993; Dawes 2001). This result has been challenged recently
(Stellmach et al. 2014, and the current work). In terms of heat transfer, the weakly
nonlinear theory (Bassom & Zhang 1994; Dawes 2001) predicts a dependence Nu=2¢
of the Nusselt number Nu (dimensionless convective heat transfer) on the normalised
distance from onset, € = Ra/Ra. — 1, where Ra. is the critical Rayleigh number.
This prediction matches nicely with the results near onset from the asymptotic
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equations (Julien et al. 2012a) and, by extension, of the stress-free DNS (Stellmach
et al. 2014). Ecke (2015) argues that also the no-slip DNS results of Stellmach et al.
(2014) are consistent with weakly nonlinear theory.

However, a complete picture of what is happening during the transition to the
geostrophic regime, and where it takes place in the parameter space, is still missing.
In this paper we present numerical simulations covering the transition to geostrophic
convective turbulence using the full Navier—Stokes equations for a single Prandtl
number. We analyse in detail the effects of the choice of boundary conditions, i.e.
including or omitting the Ekman layers. In § 2 we describe the numerical method and
give the parameter values for the runs. The results for the convective heat transfer
are presented in § 3. In §4 we consider the effects of rotation on the boundary-layer
scales and on the volumetric distribution of kinetic energy and thermal variance
dissipation, an approach that has allowed for the Grossmann-Lohse theory of heat
transfer in non-rotating RB flow (Grossmann & Lohse 2000, 2001, 2004; Stevens
et al. 2013b). The flow phenomenology and its relation with the spectral energy
transfer is considered in §5. We conclude with an interpretation and discussion of
these findings in § 6.

2. Simulation details

We have conducted a set of DNS of 3D rotating RB in a horizontally periodic
Cartesian computational box. By using a second-order energy-conserving, finite-
difference code with fractional time stepping (Verzicco & Orlandi 1996), we march in
time the Navier—Stokes equations plus an advection—diffusion equation for temperature,
with the usual Boussinesq approximations (Chandrasekhar 1961):

ou

1 Pr
” +(u-V)u+EeZxu=—Vp+\/EV2u+0ez, 2.1)

a0 1
— 4+ (u-V)o=
ot ( ) +/Ra Pr

with the incompressibility constraint

V36, (2.2)

V.u=0. (2.3)

Here u is the velocity vector; ¢ is time; e, is the unit vector in the vertical direction;
Ra is the Rayleigh number, i.e. the non-dimensional temperature difference, defined
as Ra = gBAL?/(vk), with L the height of the system, 8 the thermal expansion
coefficient of the fluid, g the gravitational acceleration, A the temperature difference
between the bottom and top plates, and v and « the kinematic viscosity and thermal
diffusivity of the fluid, respectively; Ro is the Rossby number, i.e. the inverse rotation
rate, defined as Ro = /(BgA/L)/(252), with §2 the angular rotation rate; Pr is the
Prandtl number of the fluid, Pr = v/k; and 6 is the non-dimensional temperature.
Equations (2.1)-(2.3) are non-dimensionalised by using L, A and the so-called
free-fall velocity scale U = /BgAL. Note that centrifugal buoyancy is neglected
here; this means that we are implicitly making the customary assumption that the
Froude number Fr = 22?R/g <« 1 (Stevens et al. 2013a), where R is the horizontal
distance to the rotation axis, i.e. the radius of the cylinder in most experiments and
simulations. We also define the Nusselt number, i.e. the non-dimensional heat transfer,
as Nu= ((u,0)4, —k3(0)a.)/(k AL™"), with (- - -),, representing the averaging operator
in time and also spatially over a horizontal plane.

Downloaded from http:/www.cambridge.org/core. Twente University Library, on 28 Sep 2016 at 11:38:31, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.394


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.394
http:/www.cambridge.org/core

Transition to geostrophic convection: role of boundary conditions 417

Ra Ek Ro Ra r N, x Ny x N, Nusg Nuys  N(S))

1x 10" 400x1077 0.040 295 0.36 384x384x768 8.82 21.0 12
1x10% 4.00x 1077 0.040 295 0.71 768 x768x768 9.13 21.0 12
1x10% 6.00x 1077 0.060 50.6 0.41 384x384x768 207 314 15
1 x10° 9.00x 1077 0.090 869 046 384x384x768 462 502 17
1 x10° 120x107% 0.12 1275 051 384 x384x768 685 652 18
Ix10% 150x 10 0.15 171.7 0.55 384x384x768 91.0 76.0 20
1 x10° 200x107% 020 2520 0.61 512x512x768 113.7 83.5 23

5% 10" 1.34x1077 0.030 343 025 512x512x1024 920 21.1 12
510" 1.79x 1077 0.040 504 027 512x512x1024 182  30.8 14
5% 10" 295x 1077 0.066 98.3 032 512x512x1024 529 615 17
5% 10" 4.02x1077 0.090 148.6 036 512x512x1024 950 8383 19
5%10" 492x1077 011 1942 038 512x512x 1024 117.0 103.5 21
5x10° 671 x 1077 0.15 293.6 042 512x512x1024 159.6 119.5 23

TABLE 1. Parameter values for the computations. For all runs, Pr=1. Each parameter set
has been run with both NS and SF boundary conditions. Included are: Rayleigh number

Ra, Ekman number Ek, Rossby number Ro, Ra = Ra Ek*?® (Sprague et al. 2006), domain
aspect ratio I' = D/L (ratio of horizontal periodicity length D to domain height L) and
number of grid points N, x N, x N, in the periodic directions and the vertical direction,
respectively. We also list the resulting Nusselt numbers Nugr and Nuys, as well as the
number of grid points N(§,) within the kinetic boundary layer in the NS runs (see also
§4.1). Typical time step sizes are 0.004 and 0.002 for Ra =1 x 10" and 5 x 10",
respectively, expressed in convective time units H/U.

The explored parameter values are given in table 1. We vary the rotation rate
Ro at a constant thermal driving Ra for two values of Ra, while fixing the Prandtl
number to Pr = 1. The Ekman number, defined as Ek = v/(2§2L?) = Ro+/Pr/Ra, is
small enough to enter into the geostrophic regime, as can be seen from table 1. For
completeness, we also define the Taylor number 7a = Ek~2. The aspect ratio, I' =D/L,
where D is the simulation box periodicity length in the horizontal directions, is set
to 10 times the most unstable wavelength for convective instability, L., i.e. I = 10L.
Wavelength L. scales asymptotically as L. =4.82Ek'/?, with minor corrections at finite
Ek (Chandrasekhar 1961; Niiler & Bisshopp 1965; Heard & Veronis 1971). Here, we
just take I" = 48.2Ek'?. The boundary conditions for temperature are fixed as 6 = 1
at the bottom plate and 6 =0 at the top plate. For velocity, we employ both no-slip
(NS) boundary conditions, i.e. u = 0 at both plates, and stress-free (SF) boundary
conditions, i.e. d,u, = d,u, =0 and u, =0 at the plates.

The grid is uniformly discretised in the horizontal direction. In the vertical direction,
a clipped Chebyshev distribution is used to cluster points near the boundary layers.
While the resulting boundary-layer thicknesses will be presented in § 4.1, we comment
here on the adequacy of the near-wall resolution. The number of grid points found
within the kinetic boundary layer is reported in the last column of table 1. The most
demanding simulation at Ra =5 x 10' and Ek = 1.34 x 1077 has 12 grid points
within the kinetic boundary layer; the same is true for the case Ra =1 x 109 and
Ek =4.00 x 1077, Higher Ekman numbers result in larger boundary-layer thicknesses
and thus they are better resolved. The grid resolutions used here are in line with recent
computations by Stellmach et al. (2014), and thus we consider them to be adequate.
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FIGURE 1. (Colour online) Phase diagram of rotating convection (a) in the (Ek, Ra/Ra.)
parameter space, as suggested by Ecke & Niemela (2014), and (b) in the (7a, Ra)
parameter space (Vorobieff & Ecke 2002). The blue circles indicate the parameter values
for which we have performed simulations using both no-slip (NS) and stress-free (SF)
boundary conditions. The circles are either open for Ra =1 x 10'° or filled for Ra =
5 x 10'°, Three different regimes of convection can be discerned: non-rotating convection,
rotation-affected convection and (rotation-dominated) geostrophic convection. The lines
display various relations suggested in the literature that bound the regimes. Ecke &
Niemela (2014) suggested Ra/Ra. =3 as a lower bound of the geostrophic regime (dotted
black line), Ra=0.25Ek~"® for the transition between the geostrophic and rotation-affected
regimes (solid black line), and Ro = 0.35 for the transition to the non-rotating regime
(dashed black line). The dash-dotted black line is a transition valid for higher Pr ~ 6
(Ecke & Niemela 2014). Two alternative predictions for the transition to the geostrophic
regime are also displayed: upper grey dashed line, Ra=1.4Ek~"/* (King et al. 2009); and
lower grey dashed line, Ra~ 10Ek~*? (King, Stellmach & Aurnou 2012).

For statistical convergence, the simulations are run until the temperature gradient
at both plates is equal to less than 1%, and the temporal convergence error of the
Nusselt number measured through a volume average is smaller than 2 %. In practice,
this means running the simulations between 100 and 200 convective time units, which
are defined using the system height L and the free-fall velocity U. The total time
varies: the lower Ek, the slower the convergence of statistics.

We tested the dependence on I of the simulations by running two cases at
Ra=1 x 10" and Ro=0.04 with a twice larger I" (thus increasing the computational
box size by a factor four, and hence the computational load by at least that amount).
The Nusselt number is the same for no-slip plates but shows some difference in the
stress-free case. For no-slip plates, we do not expect a strong dependence on I as
long as it is large enough. However, for stress-free plates, differences may occur that
are related to the flow structure. This will be addressed in more detail in §5.

To indicate how the current simulations fit in with the previous work on this topic,
we display our current parameter values in the (Ek, Ra/Ra.) phase diagram of figure 1,
where Ra,. is the critical Rayleigh number for the onset of the convective instability
with rotation, i.e. Ra. = 8.7Ek~*?* (Chandrasekhar 1961), and in the (Ta, Ra) phase
diagram. Figure 1(a) is based on figure 4 of Ecke & Niemela (2014), and shows
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how the parameter values of the simulations in this paper are positioned relative to
some of the proposed bounds on the geostrophic regime. Typically, a lower bound for
the geostrophic regime is chosen such that the resulting flow is supercritical enough
for a turbulent flow to develop. We follow Ecke & Niemela (2014) by choosing
Ra/Ra. = 3 (dotted black line in figure 1). Ecke & Niemela (2014) discern two
additional transitions based on their heat-transfer measurements in cryogenic helium
with Pr=0.7. When reducing the Rayleigh number at constant Ek, the first transition
seen is when rotation starts to reduce the heat transfer. This is well described by
Ro = 0.35 (dashed black line in figure 1). When Ra is reduced even further, a
transition to a steeper scaling law relating Nu and Ra was found. Ecke & Niemela
(2014) interpreted this as the transition to the geostrophic regime. This transition was
best described by the relation Ra=0.25Ek~"® (solid black line in figure 1) according
to their data. For completeness, two other suggested relations for the transfer to the
geostrophic regime have also been included in figure 1: Ra = 1.4Ek~"/* as suggested
by King er al. (2009) (upper grey dashed line) and Ra ~ 10Ek~** from King et al.
(2012) (lower grey dashed line). From the diagram, we expect our simulations to
show a transition from the rotation-affected to the geostrophic regime for all criteria,
except the one suggested by King et al. (2009).

3. Heat transfer

In this section, we investigate the convective heat transfer through the fluid layer as
a function of the applied control parameters. In the geostrophic regime, no consensus
has been reached on the heat-transfer dependence Nu(Ra, Pr, Ek), in particular
because it is challenging to achieve the extreme parameter values for Ra and Ek
in both experiments and simulations. We summarise the results from the literature
reported earlier in table 2, and indicate the method (experimental, numerical or from
theory) and range of parameters considered. It must be emphasised that most of these
works are outside of the geostrophic regime; the exceptions are the theories by King
et al. (2012) and Julien et al. (2012a), as well as the numerical simulations by the
latter authors, which consider the asymptotically reduced equations for rapid rotation.

The two recent experimental investigations that enter into the geostrophic regime
show quite different results. Ecke & Niemela (2014) achieved 4 x 10° < Ra < 4 x 10"!
and 2 x 107" < Ek <3 x 10 at Pr=0.7 used cryogenic helium gas as the working
fluid. Their data could be described as Nu ~ (Ra/Ra.)”, with y =~ 1 using direct
measurement or 1.2 <y < 1.6 after rescaling of the original data following existing
theoretical arguments. The scaling ranges were not extensive enough to decisively
discern between these scalings. On the other hand, Cheng et al. (2015) employed
water as the working fluid. In their tall, slender cell, they could achieve 1 x 100 <
Ra <1 x 10" and 2 x 107® < Ek <2 x 107° for 3.5 < Pr < 6.5. They also reported
scaling as Nu~ (Ra/Ra.)”, with a monotonically increasing y from 1.8 at Ek= 10"}
to 3.6 at Ek=10"", based on a combination of experimental and DNS results.

Figure 2 shows Nu as a function of Ek obtained from the present simulations.
By simple observation, it is clear that the boundary conditions (NS or SF) play a
decisive role, even in the slope of the graph, i.e. the exponent o of the local scaling
law Nu ~ Ek*. Both NS and SF boundary conditions display a transition in the scaling
law (indicated with arrows in the graph) at Ek~9 x 1077 for Ra =1 x 10'° and at
Ek~3 x 1077 for Ra=35 x 10'°, as evidenced by the slope change. This transition is
generally considered the boundary between rotation-affected and rotation-dominated
convection (Ecke & Niemela 2014). At Ekman numbers below the transition, we
observe distinctly different scalings with Ek. The SF exponents (¢ = 2.04 for
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FIGURE 2. (Colour online) Heat transfer (Nusselt number Nu) as a function of the Ekman
number Ek: (a) SF plates; (b) NS plates. Open symbols are for Ra = 1 x 10'°; filled
symbols for Ra =35 x 10'°, The dashed lines depict fitted power-law slopes. The arrows
indicate the transition points as we inferred them from these graphs.

Ra =1 x 10" and a = 2.21 for Ra = 5 x 10'°) match fairly well (especially for
the lower Ra case) with the theoretically predicted exponent o = 2 of Julien et al.
(2012a), found to be valid for simulations of the reduced equations, with boundary
conditions that can be described as stress-free.

However, the NS runs reveal effective exponents a = 1.07 for Ra =1 x 10" and
a = 1.36 for Ra =35 x 10', considerably lower than the SF runs and pronouncedly
lower than the correlations inferred by King ef al. (2012), which predict « = 4 for
NS plates. Schmitz & Tilgner (2009, 2010) have reported simulations with both NS
and SF boundaries; they reported good agreement with the exponent 1.5, in fair
agreement with the current NS runs (at least at Ra =35 x 10'°), but somewhat low for
SE. The experiments by Ecke & Niemela (2014) have provided approximate scaling
exponents between 1.6 and 2.1, depending on the exact plotting convention to attain
data collapse.

It is worth noting that there is quite a difference in the applied Ra between the
various works. Typically, values of Ra up to 5 x 10° are applied in experiments and
simulations (King et al. 2009; Schmitz & Tilgner 2009, 2010; King et al. 2012; King,
Stellmach & Buffett 2013), while only recently higher values have been attained —
cf. simulations by Stellmach et al. (2014), experiments by Ecke & Niemela (2014)
and Cheng et al. (2015), as well as the current simulations. It is plausible that what
we observe is a new scaling regime opening up at such high Ra, strongly affected
by rapid rotation (very low Ek ~ O(1077)) but still vigorously turbulent (highly
supercritical, i.e. Ra/Ra. > 1), i.e. the geostrophic regime.

To further quantify the scaling laws, we show in figure 3 the compensated Nusselt
number with the two scaling laws proposed by both King et al. (2012) and Julien
et al. (2012a). Again, we can see that the Nu ~ Ek*> (Julien et al. 2012a) captures
well the Ekman-number dependence of the free-slip simulations below the transition,
but the no-slip simulations present a very different dependence. The Nu ~ Ek* scaling
law (King et al. 2012) can be seen to be a clear overestimate of the scaling exponent
relating Nu and Ek.
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FIGURE 3. (Colour online) Compensated heat transfer (Nusselt number Nu) as a function
of the Ekman number Ek using the proposed scaling laws: (a) Nu ~ Ra*Ek* (King et al.
2012) and (b) Nu~ Ra*?Ek*> (Julien et al. 2012a). Open symbols are for Ra =1 x 10';
filled symbols for Ra =5 x 10'°. The red squares represent no-slip boundary conditions,
and blue circles free-slip boundary conditions.

Another striking feature of this graph is that, at the same Ra, there is a range
for which Nu is lower for SF than for NS boundaries (Stellmach er al. 2014).
Generally, NS boundaries are expected to reduce the turbulence intensity of the
flow by introducing more friction than SF plates. However, the active nature of the
Ekman boundaries, present for NS but absent for SF, can affect the dynamics of the
entire fluid layer, enhancing the heat transfer instead of reducing it. We will revisit
these results in later sections, where further differences between NS and SF runs are
revealed and interpreted.

4. Boundary-layer and bulk dissipation

For RB convection, one can derive from the Navier—Stokes equations with the
Boussinesq approximation exact relations for the total dissipation of turbulent kinetic
energy and thermal variance within the domain (Shraiman & Siggia 1990). The energy
equations are obtained by taking the inner product of u with (2.1) and multiplying
(2.2) with 0, respectively. After applying the boundary conditions, the dissipation
relations in dimensional form read

V3 A?
€, = E(Nu — DRaPr2, = KFNM, (4.1a,b)

where ¢, is the (time- and volume-averaged) total dissipation of turbulent kinetic
energy in the fluid layer and ¢, is the total dissipation of thermal variance in the
layer. These relations do not change when rotation is added: rotation only enters in
the momentum equation (2.1), where we find for the Coriolis term in the energy
equation that u - (e, x u) =0.

The Grossmann—Lohse heat-transfer theory for non-rotating convection (see Ahlers,
Grossmann & Lohse (2009) for an overview) is based on a division of the total
dissipations into bulk and boundary-layer (BL) contributions. Several scaling regimes
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FIGURE 4. (Colour online) Boundary-layer thicknesses and their dependence on Ek:
(a) SF plates, thermal BL thickness (§y); (b) NS plates, thermal BL thickness (8, red
squares) and kinetic BL thickness (§,, black triangles). The arrows indicate the transition
points as inferred from these graphs, when the steeply decreasing &, begins to flatten out.
A power-law fit §,/L=4.0Ek*3! is also included (black dashed line). In both panels, open
symbols are for Ra =1 x 10'°, and filled symbols for Ra =5 x 10'°,

can be found depending on the dominance of dissipation in either bulk or BL
regions, for both €, and €,. The theoretical arguments by Julien ef al. (2012a)
employ such a division for €, (no division of €, given that in their SF case no
kinetic BLs are formed) and show that the bulk limits the overall heat transfer in the
geostrophic-turbulence state of the rotation-dominated geostrophic regime.

4.1. Boundary-layer scales

In this section we want to compare the distribution of dissipation for both NS and
SF plates. To this end, we first need to discern between BL and bulk. Several
BL scales have already been introduced in the RB literature. The thickness of the
thermal BLs in the non-rotating case is well described by assuming that the bulk is
isothermal, and that the temperature drop is fully accommodated by the BLs. This
leads to the definition &y ,/L =1/(2Nu). This relation is not appropriate for rotating
RB convection, given that a mean temperature drop across the bulk is sustained
(Julien et al. 1996). We therefore rely on the common definition of BL thicknesses
in turbulence that uses the position of the peak value of the root mean square of
temperature fluctuations, denoted by §,. Julien et al. (2012b) found this definition to
be the most appropriate one. For the kinetic (velocity) BLs we use the positions of
the peak root mean square of horizontal velocities, marked §,.

A comparison of these BL scales is presented in figure 4. Starting from the kinetic
BLs (black symbols), it is clear that they follow a single scaling, independent of Ra,
i.e. their thickness is exclusively determined by Ek. A power law yields the relation
8,/L=4.0EK">'. Within error, the slope is consistent with the prediction §, ~ Ek'/? for
linear Ekman BLs (Greenspan 1968). It is worth noting that this scaling also matches
nicely with the BL scaling laws reported by Kunnen et al. (2010b), even though the
geometry (cylinder instead of periodic cube) and the Prandtl number (Pr=6.4 instead
of Pr=1) are completely different.

Downloaded from http:/www.cambridge.org/core. Twente University Library, on 28 Sep 2016 at 11:38:31, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.394


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.394
http:/www.cambridge.org/core

424 R. P J Kunnen and others

(a) 0.50 . (b) 050 :
SF NS
045 | g 045 . ]
o =]
0.40 | o 0.40 | .
L 035} ° ° - 035} - = 1
S
L0330t ° o . 0.30 | " o g
Fole |
0.25 0 ° g 025 g
[ ] [ ]
0.20 | ° g 020} A g
] A A
0.15 F T g 0'15_AATA“A L AA
0.10 : 0.10 :
1077 10°° 1077 10°°
Ek Ek

FIGURE 5. (Colour online) Distribution of dissipations €, and €, between bulk and BL:
(a) SF plates, €y; (b) NS plates, €4 (red squares) and ¢, (black triangles). The fraction of
total dissipation located in the BL region is displayed. Open symbols are for Ra=1 x 10';
filled symbols for Ra =5 x 10'°. The arrows indicate the transition points as we inferred
them from these graphs.

On the other hand, the thermal BL thicknesses do reveal some variation with Ek.
Before the transition, the thermal BL thickness steeply decreases when Ek is increased,
in contrast to the kinetic BLs. In that Ek range, the local scaling laws relating Nu
and Ek are steeper for SF than for NS. King et al. (2009) and King et al. (2012)
proposed that the transition to the rotation-dominated heat-flux scaling is described
by the crossing of the kinetic and thermal BL thicknesses, which happens around
Ek =7 x 1077 for NS and Ra =5 x 10" in this case. However, the slope change
in the scaling laws (figure 2) is found at lower values of Ek. For Ra =1 x 10" a
similar mismatch is observed.

A more natural definition of the transition, based on the BL scales as plotted in
figure 4, would be the evident slope change of §; at Ek=8 x 1077 for Ra=1 x 10'°
and at Ek=3 x 1077 for Ra=35 x 10'°, which remarkably occurs around the same Ek
value for both NS and SF. This transition value matches better with the slope change
in the heat-transfer statistics, even if they do not exactly coincide. The transition to
the geostrophic regime thus appears to be gradual; different statistics display a change
in behaviour at different values of Ek.

4.2. Distribution of dissipation

Using the BL scales of §4.1, we can now assess how the total dissipation is
distributed between BL and bulk regions. This is shown in figure 5, which confirms
the picture that, under rapid rotation, the dissipation is mostly concentrated in the
bulk. This is the case even more for ¢, than for ¢;. However, we also note that
the fraction of €, in the BLs appears to start growing when Ek is reduced below
~5x 1077 (~2x 1077) for Ra=1 x 10'° (5 x 10'°), with an earlier growth appearing
for SF than for NS. Looking back to figure 4, it is obvious that the thermal BLs are
expanding when Ek is reduced. The larger part of the volume inside the thermal BLs
along with a persistent input of thermal fluctuations from the Ekman BLs enhances
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FIGURE 6. (Colour online) Snapshot at mid-height (z=0.5) of the vertical vorticity from
runs at Ra=>5 x 10'° and Ek=1.34 x 10~7: (a) SF plates; (b) NS plates. Red is positive
(cyclonic) vorticity, while blue is negative (anticyclonic) vorticity. Both plots have the
same colour scale.

the BL fraction of ¢, at the lowest considered Ek under NS conditions. For SF plates
the thermal BLs are growing even more as Ek is reduced; the increased volume of
the BLs appears to be enough for a higher fraction of ¢, there.

Furthermore, the contribution of the kinetic BLs to the total ¢, is remarkable:
for Ra =5 x 10'°, between Ek = 1.3 x 1077 and Ek =5 x 1077 the BL thickness
changes by a factor 2, yet the fraction of €, in the BL remains roughly constant.
This confirms that the Ekman BLs, first thought to become passive at low enough Ek
(Niiler & Bisshopp 1965; Heard & Veronis 1971; Julien & Knobloch 1998), are still
significantly affecting the flow dynamics (Stellmach et al. 2014).

5. Flow phenomenology

A remarkable phenomenological change upon entering the geostrophic-turbulence
state of the rotation-dominated geostrophic regime is the disappearance of convective
Taylor columns and plumes as a result of a loss of vertical coherence (Sprague
et al. 2006; Julien et al. 2012b; Stellmach et al. 2014). These vortical structures
have been frequently reported ever since the first observation in turbulent rotating
RB flow by Rossby (1969). In the geostrophic-turbulence state, however, such
coherent structures seem to be absent. The boundary conditions largely determine
the flow phenomenology. For SF plates, large barotropic vortices can be formed
under the influence of an inverse energy cascade (Favier et al. 2014; Guervilly
et al. 2014; Rubio et al. 2014; Stellmach et al. 2014), eventually growing to the
scale of the domain. For NS plates, such a condensate is not formed. We compare
the phenomenology in two snapshots shown in figure 6, which depict the spatial
distribution of vertical vorticity w, = d,u, — d,u, in a horizontal cross-section at
mid-height. Figure 6(a) clearly reveals the formation of a large cyclonic vortex in the
top right, while the bottom-right part and its periodic continuation on opposite sides
hint at the formation of an anticyclonic vortex. Note that this flow is still slowly
evolving over time (Favier et al. 2014; Guervilly et al. 2014; Rubio et al. 2014).
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FIGURE 7. (Colour online) Spectral energy transfer 7(Q, K) between wavenumber shells
QO and K: (a) for SF and (b) for NS. Positive values indicate that energy is taken from
shell O and transferred to shell K; negative values imply that Q receives energy from K.
Both plots have the same colour scale.

Figure 6(b) shows no condensate vortices. Instead, a fluctuating state is found without
large-scale long-lived coherent structure. Ekman pumping, present only in the case of
NS boundary conditions, can thus be a source of small-scale fluctuations that prevent
condensation into large-scale vortices.

5.1. Relation with spectral energy transfer

In previous works (Favier et al. 2014; Rubio et al. 2014), the energy transfer as a
function of wavenumber has been considered to indicate the presence of an inverse
energy cascade. Given that figure 6 reveals such a significant difference in flow
phenomenology between SF and NS, we anticipate that the spectral energy transfer
must also be considerably different. Following Favier et al. (2014), we define the
spectral energy equation as

dEKK)
dt

Y T(Q. K) — D(K) + F(K), (5.1)
Q

which gives the temporal evolution of the energy E(K) as a function of horizontal
wavenumber K in terms of the energy transfer 7(Q, K) from wavenumber shell Q
to shell K, the dissipation D(K) and the buoyant forcing F(K). We are particularly
interested in the transfer term 7'(Q, K), which we evaluate and average vertically
over the entire computational domain minus the BLs. We note that this quantity is
antisymmetric by definition, i.e. T(K;, K;) = —T(K;, K;) and T(K,, K;) =0 for any
two wavenumbers K; and K,.

The spectral transfer at Ra =35 x 10" and Ek=1.34 x 1077 is depicted in figure 7,
for both SF and NS conditions. We note that we are only showing the first 30
modes, of a total of 256 in the simulation, so the dispersive errors of finite-difference
schemes are negligible in this range. The SF picture compares favourably to the
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earlier studies by Favier et al. (2014) and Rubio et al. (2014): a strong localised
exchange of energy between neighbouring wavenumbers across the diagonal, i.e.
a certain mode P interacts predominantly with its neighbouring modes P — 1 and
P+ 1. The sign of the transfer reveals that this part of the cascade is direct: energy
is transferred to larger wavenumbers. At low K < 7 and higher Q = 7, a range of
inverse transfer is found where small-K modes receive energy from modes Q > K.
The input of energy into the large-scale vortex of figure 6(a) can be recognised as
an interaction of the smallest wavenumbers receiving energy from a broad range
of higher-order wavenumbers. Such a non-local inverse cascade has been observed
before in rotating convection by Favier er al. (2014), who could display a clearer
effect due to a considerably larger domain. It is also similar to the inverse energy
cascade in rotating turbulence (Mininni, Alexakis & Pouquet 2009). The non-locality
indicates that the largest flow scale directly receives energy from the smaller scales
without passing through intermediate scales. In contrast, in the direct cascade,
energy is transferred from large to small while passing through all intermediate
scales.

For the NS case (figure 7b), the picture changes. In particular, the ‘staircase’ of
energy transfer along the diagonal, which is prominent for SF, is not as strongly
present for the larger wavenumbers. Instead, the interactions between modes are less
localised, meaning that the interactions are spread more and mode combinations
farther from the diagonal are transferring energy. A direct cascade is formed along
the diagonal for K, Q > 5. Curiously, some signs of an inverse cascade remain: (i) for
K <5, and (ii) transfers from modes around Q ~5 to K ~ 10, which are non-localised.
The absence of a large-scale structure can be explained by the fact that the lowest
wavenumber is receiving considerably less energy and from a narrower range of
scales than in SF.

5.2. Relation with mean temperature gradient

The characteristic flow phenomenology of rotating RB convection has been related
to the occurrence (and strength) of the persistent mean temperature gradient across
the bulk (Julien et al. 1996), unlike the statistically isothermal bulk of non-rotating
RB. The origin of this temperature gradient has been proposed to be increased by
lateral mixing, induced by interactions of like-signed vortical plumes. As in the
geostrophic-turbulence state the flow phenomenology is altered (cf. figure 6), we can
expect that this also affects the strength of the mean temperature gradient. Figure 8
shows the mean temperature gradient as a function of Ek. In the rotation-affected
RB, lateral mixing being stronger than vertical mixing leads to mean temperature
gradients as large as —0.5 for NS and —0.4 for SF. However, upon entering the
geostrophic-turbulence state by further reducing Ek, the magnitude of the gradient
is gradually diminished. We thus expect that in the geostrophic-turbulence state the
mixing can become slightly more 3D again.

This behaviour is consistent with previous simulations of the asymptotic equations
(Julien et al. 2012b), which predict that the geostrophic-turbulence state indeed still
has a mean temperature gradient, but less steep than when coherent vortical plumes
are present. Finally, even though the behaviour of the mean temperature gradient is
qualitatively similar for SF and NS plates, the location of the minimum temperature
gradient, which could be taken as an additional indicator for the transition, certainly
does not coincide between the two cases.
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FIGURE 8. (Colour online) Mean temperature gradient at midplane: (a) for SF and () for
NS. Open symbols are for Ra =1 x 10'%; filled symbols for Ra =5 x 10'°. The arrows
indicate the transition points as inferred from these graphs.

6. Discussion

In the previous sections we have compared the transition to the geostrophic regime
of turbulent rotating RB convection between SF and NS boundary conditions on
the horizontal plates. From the current results, it seems clear that the nature of the
bulk turbulence is extremely dependent on the boundary conditions. Nevertheless,
both types of boundary conditions display a transition in a similar range of Ekman
numbers around Ek=9 x 1077 (3 x 1077) for Ra=1 x 10'* (5 x 10'°). This transition
is found to be gradual, unlike other transitions in rotating RB flow, such as those
reported in confined geometries at higher Ek (Stevens er al. 2009). Many diagnostic
signs of flow transition can be found near the onset of the geostrophic regime: the
scaling with Ek of many quantities including Nusselt number, thermal BL thickness,
bulk—BL distribution of dissipation rates as well as the midplane mean temperature
gradient show a changing behaviour. We do not expect this list to be exhaustive.
All quantities show a transition centred at a specific Ek, so that the full range of
changes covers at least half a decade in Ek. In particular, at Ra = 1 x 10" we
inferred transitions in various statistics in the range 6 x 1077 < Ek < 1.3 x 107%; at
Ra =5 x 10" in the range 2.4 x 1077 < Ek <4.5 x 10'°. These ranges are the same
for SF and NS plates; however, individual statistics display transitions at different Ek
when comparing the two boundary conditions. So it appears to be all but impossible
to define a single criterion to distinguish the rotation-dominated geostrophic regime
from the rotation-affected regime, as indeed the flow may be transitioning, but the
different diagnostic quantities may be sensitive slightly before or slightly after the
transition.

Regarding the actual nature of the transition, it is quite remarkable that the SF and
NS transition ranges coincide in Ek for similar Ra. This would suggest a common
origin. One of two candidates (or a combination of both) suggested in the literature
may be the cause: either marginal (in)stability of the thermal BL, as suggested by
King et al. (2012), which leads to a theoretical scaling Nu ~ Ra’Ek*; or a change
in the bulk dynamics where plumes cannot enter the stiff geostrophic bulk that
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throttles the heat transport, suggested by Julien et al. (2012a), which gives a scaling
Nu ~ Ra**Ek*. Both arguments could in principle be independent of the velocity
boundary conditions, given that either the thermal BLs or the bulk flow away from
the BLs is involved. We find mostly evidence supporting the Julien er al. (2012a)
mechanism, but it is certainly not conclusive:

(1) The geostrophic Nusselt-number scaling of figure 2 matches fairly with the Julien
et al. (2012a) scaling for SF plates, but not for NS. The scaling proposed by
King et al. (2012) does not match with the current results for either boundary
condition. In line with the recent experimental results of Cheng et al. (2015), it is
becoming clear that the heat-transfer scaling exponent B8 for Nu ~ Ra” measured
at constant Ek is not the same for all Ek; equivalently, the exponent y for
Nu ~ Ek” at constant Ra will take different values for different Ra.

(ii) For the BL thickness (figure 4) we find a change in scaling at Ek =8 x 1077
3 x 1077) at Ra=1 x 10" (5 x 10'%) for both SF and NS, with steeper scaling
with Ek below the transition. The transition does not coincide with the crossing of
the kinetic and thermal BL thicknesses, which is the criterion proposed by King
et al. (2009, 2012) to describe its origin. The sharp change of scaling indicates
changes in the structure of the thermal BL, which could be due to the crossing
of the marginal stability criterion for the BL. However, the corresponding limit
of validity Ra < Ek=/? for the argument (King et al. 2012) would at the current
Ra =5 x 10'° predict a transition at Ek ~ 7 x 1073, at significantly smaller Ek
than we observe.

(iii) Finally, the spatial distribution of dissipation of both turbulent kinetic energy
(ep) and thermal variance (¢,) between bulk and BL (figure 5) reveals that most
of the dissipation is found to occur in the bulk, even more so for €, than for
€y. The fractional distribution between bulk and BL reveals a slope change at
Ek~6x 1077 (2x1077) at Ra=1 x 10" (5 x 10'%) for both SF and NS.

For SF plates, the Julien et al. (2012a) arguments fit best with our findings.
However, the case of NS plates requires a different description given the presence
of Ekman layers that are significantly affecting the flow dynamics in the entire fluid
layer. We presently cannot give a theoretical description, but we expect that these
results, together with the recent findings by Stellmach et al. (2014) and Cheng et al.
(2015), can form a starting point for theories of no-slip geophysical convection. In
that respect we want to mention here the recent work by Julien et al. (2016) where
Ekman pumping is incorporated into the asymptotically reduced equations.

In conclusion, it has become apparent in the last few years that the Ekman layers
remain a decisive and active part of geostrophic convection with no-slip plates, in spite
of their diminishing thickness. We have compared the transition to the geostrophic
regime between no-slip and stress-free boundaries. Both undergo a transition, at
roughly the same Ekman number, but the scaling laws for heat transfer on both sides
of the transition are strongly dependent on the boundary conditions. The physical
picture of geostrophic convection is not fully complete, especially for no-slip plates.
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